Brain change trajectories in healthy adults correlate with Alzheimer’s related genetic variation and memory decline across life

0
Brain change trajectories in healthy adults correlate with Alzheimer’s related genetic variation and memory decline across life
  • Sexton, C. E. et al. Accelerated changes in white matter microstructure during aging: a longitudinal diffusion tensor imaging study. J. Neurosci. 34, 15425–15436 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Walhovd, K. B. et al. Genetic risk for Alzheimer disease predicts hippocampal volume through the human lifespan. Neurol. Genet. 6, e506 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Vidal-Pineiro, D. et al. Cellular correlates of cortical thinning throughout the lifespan. Sci. Rep. 10, 1–14 (2020).

    Article 

    Google Scholar 

  • Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M. & Walhovd, K. B. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog. Neurobiol. 117, 20–40 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M. & Walhovd, K. B. Brain changes in older adults at very low risk for Alzheimer’s disease. J. Neurosci. 33, 8237–8242 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fjell, A. M. et al. One-year brain atrophy evident in healthy aging. 29, 15223–15231 (2009).

  • Roe, J. M. et al. Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease. Nat. Commun. 12, 1–11 (2021).

    Article 
    ADS 

    Google Scholar 

  • Braak, H. & Braak, E. Staging of Alzheimer-related cortical destruction. Rev. Clin. Neurosci. 33, 403–408 (1993).

    CAS 

    Google Scholar 

  • Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 19, 687–700 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rutherford, S. et al. Charting brain growth and aging at high spatial precision. Elife 11, 1–15 (2022).

    Article 

    Google Scholar 

  • Walhovd, K. B. et al. Neurodevelopmental origins of lifespan changes in brain and cognition. Proc. Natl Acad. Sci. USA. 113, 9357–9362 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Raz, N. et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb. Cortex 15, 1676–1689 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Fjell, A. M. et al. Accelerating cortical thinning: unique to dementia or universal in aging? Cereb. Cortex 24, 919–934 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Corrada, M. M., Brookmeyer, R., Paganini-Hill, A., Berlau, D. & Kawas, C. H. Dementia incidence continues to increase with age in the oldest old the 90+ study. Ann. Neurol. 67, 114–121 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jorm, A. & Jolley, D. The incidence of dementia: a meta-analysis. Neurology 51, 728–733 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Desikan, R. S. et al. Genetic assessment of age-associated Alzheimer disease risk: development and validation of a polygenic hazard score. PLoS Med. 14, 1–17 (2017).

    Article 

    Google Scholar 

  • Altmann, A. et al. A comprehensive analysis of methods for assessing polygenic burden on Alzheimer’s disease pathology and risk beyond APOE. Brain Commun. 2, fcz047 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Logue, M. W. et al. Use of an Alzheimer’s disease polygenic risk score to identify mild cognitive impairment in adults in their 50 s. Mol. Psychiatry 24, 421–430 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lyall, D. M. et al. Association between APOE e4 and white matter hyperintensity volume, but not total brain volume or white matter integrity. Brain Imaging Behav. 14, 1468–1476 (2020).

  • Machulda, M. M. et al. Effect of APOE? 4 status on intrinsic network connectivity in cognitively normal elderly subjects. Arch Neurol. 68, 1131–1136 (2011).

  • Habes, X. M. et al. Relationship between APOE genotype and structural MRI measures throughout adulthood in the study of health in Pomerania population-based cohort. AJNR Am. J. Neuroradiol. 37, 1636–42 (2016).

  • Bunce, D. et al. APOE genotype and entorhinal cortex volume in non-demented community-dwelling adults in midlife and early old age. J. Alzheimer’s Dis. 30, 935–942 (2012).

    Article 

    Google Scholar 

  • Henson, R. N. et al. Effect of apolipoprotein E polymorphism on cognition and brain in the Cambridge Centre for Ageing and Neuroscience cohort. Brain Neurosci. Adv. 4, 2398212820961704 (2020).

  • Jack, C. R. et al. Age, sex, and APOEε4 effects on memory, brain structure, and β-amyloid across the adult life span. JAMA Neurol. 72, 511-9 (2022).

  • Protas, H. D. et al. Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurol. 70, 320–325 (2013).

  • Foo, H. et al. Associations between Alzheimer’s disease polygenic risk scores and hippocampal subfield volumes in 17, 161 UK biobank participants. Neurobiol. Aging 98, 108–115 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Du, J. et al. Exploration of Alzheimer’s disease MRI biomarkers using APOE4 carrier status in the UK biobank. medRxiv (2021).

  • Knickmeyer, R. C. et al. Common variants in psychiatric risk genes predict brain structure at birth. Cerebral Cortex. 24, 1230–1246 (2014).

  • Axelrud, L. K. et al. Polygenic risk score for Alzheimer’s disease: implications for memory performance and hippocampal volumes in early life. Am. J. Psychiatry 175, 555–563 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foley, S. F. et al. Multimodal brain imaging reveals structural differences in Alzheimer’s disease polygenic risk carriers: a study in healthy young adults. Biol. Psychiatry 81, 154–161 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mormino, E. C. et al. Polygenic risk of Alzheimer disease is associated with early- and late-life processes. Neurology 87, 481–488 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fjell, A. M. et al. Self-reported sleep relates to hippocampal atrophy across the adult lifespan—results from the lifebrain consortium. Sleep 43, zsz280 (2019).

  • Donix, M. et al. Longitudinal changes in medial temporal cortical thickness in normal subjects with the APOE-4 polymorphism. Neuroimage 53, 37–43 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lu, P. H. et al. Apolipoprotein e genotype is associated with temporal and hippocampal atrophy rates in healthy elderly adults: a tensor-based morphometry study. J. Alzheimer’s Dis. 23, 433–442 (2011).

    Article 

    Google Scholar 

  • Harrison, T. M., Mahmood, Z., Lau, E. P., Karacozoff, A. M. & Alison, C. An Alzheimer’s disease genetic risk score predicts longitudinal thinning of hippocampal complex subregions in healthy older adults. eNeuro 3, ENEURO.0098-16.2016 (2016).

  • Taylor, J. L. et al. Neurobiology of Aging APOE-epsilon4 and aging of medial temporal lobe gray matter in healthy adults older than 50 years. NBA 35, 2479–2485 (2014).

    CAS 

    Google Scholar 

  • Gorbach, T. et al. Longitudinal association between hippocampus atrophy and episodic-memory decline in non-demented APOE ε4 carriers. Alzheimer’s Dement. Diagnosis. Assess. Dis. Monit. 12, 1–9 (2020).

    Google Scholar 

  • Brouwer, R. M. et al. Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nat. Neurosci. 25, 421–432 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Braak, H. & Braak, E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–284 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • La Joie, R. et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci. Transl. Med. 12, 1–13 (2020).

    Google Scholar 

  • Roe, J. M. et al. Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease. bioRxiv (2020).

  • Marioni, R. E. et al. Genetic stratification to identify risk groups for Alzheimer’s disease. J. Alzheimer’s Dis. 57, 275–283 (2017).

    Article 

    Google Scholar 

  • Hayden, K. M., Lutz, M. W., Kuchibhatla, M., Germain, C. & Plassman, B. L. Effect of APOE and CD33 on cognitive decline. PLoS ONE 10, 1–10 (2015).

    Google Scholar 

  • Caselli, R. J. et al. Longitudinal modeling of age-related memory decline and the APOE ε4 Effect. N. Engl. J. Med. 361, 255–263 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kauppi, K., Rönnlund, M., Nordin Adolfsson, A., Pudas, S. & Adolfsson, R. Effects of polygenic risk for Alzheimer’s disease on rate of cognitive decline in normal aging. Transl. Psychiatry 10, 250 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Salthouse, T. A. What and when of cognitive aging. Curr. Dir. Psychol. Sci. 13, 140–144 (2004).

    Article 

    Google Scholar 

  • Salthouse, T. A. Why are there different age relations in cross-sectional and longitudinal comparisons of cognitive functioning? Curr. Dir. Psychol. Sci. 23, 252–256 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, S. E. et al. Polygenic risk for Alzheimer’s disease is not associated with cognitive ability or cognitive aging in non-demented older people. J. Alzheimer’s Dis. 39, 565–574 (2014).

    Article 

    Google Scholar 

  • Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Simonsohn, U., Simmons, J. P. & Nelson, L. D. Specification curve analysis. Nat. Hum. Behav. 4, 1208–1214 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Steegen, S., Tuerlinckx, F., Gelman, A. & Vanpaemel, W. Increasing transparency through a multiverse analysis. Perspect Psychol. Sci. 11, 702–712 (2016).

  • Heijer, T. D. et al. Magnetic resonance imaging in early dementia and cognitive decline. Cochrane Database Syst. Rev. 3, CD009628 (2010).

  • Jack, C. R. et al. Comparison of different MRI brain athrophy rate measures with clinical disease progression in AD. Neurology 62, 591–600 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Lupton, M. K. et al. The effect of increased genetic risk for Alzheimer’s disease on hippocampal and amygdala volume. Neurobiol. Aging 40, 68–77 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chauhan, G. et al. Association of Alzheimer’s disease GWAS loci with MRI markers of brain aging. Neurobiol. Aging 36, 1765.e7–1765.e16 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Walhovd, K. B., Lövden, M. & Fjell, A. M. Timing of lifespan influences on brain and cognition. Trends Cogn. Sci. 27, 901–915 (2023).

  • Storsve, A. B. et al. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J. Neurosci. 34, 8488–8498 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Salthouse, T. A. Attrition in longitudinal data is pimarily selective with respect to level rather than rate of change. J. Int. Neuropsychol. Soc. 25, 618–623 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Papenberg, G., Lindenberger, U. & Bäckman, L. Aging-related magnification of genetic effects on cognitive and brain integrity. Trends Cogn. Sci. 19, 506–514 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wei, Y. et al. Statistical testing in transcriptomic-neuroimaging studies: A how-to and evaluation of methods assessing spatial and gene specificity. Hum. Brain Mapp. 43, 885–901 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Franzmeier, N. et al. The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory. Nat. Commun. 10, 1–12 (2019).

    Article 
    CAS 

    Google Scholar 

  • Therriault, J. et al. Association of apolipoprotein e ϵ4 with medial temporal tau independent of amyloid-β. JAMA Neurol. 77, 470–479 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Mesulam, M. A. Plasticity-based theory of the pathogenesis of Alzheimer’s disease. Ann. N. Y. Acad. Sci. 924, 42–52 (2000).

  • Walhovd, K. B. et al. Premises of plasticity—and the loneliness of the medial temporal lobe. Neuroimage 131, 48–54 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Douaud, G. et al. A common brain network links development, aging, and vulnerability to disease. Proc. Natl Acad. Sci. USA. 111, 17648–17653 (2014).

  • Jack, C. R. et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hardy, J. A., Higgins, G. A., Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Herrup, K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 18, 794–799 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Korologou-Linden, R. et al. The causes and consequences of Alzheimer’s disease: phenome-wide evidence from mendelian randomization. Nat. Commun. 13, 4726 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang, Q. et al. Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture. Nat. Commun. 11, 1–11 (2020).

    ADS 

    Google Scholar 

  • de Rojas, I. et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores. Nat. Commun. 12, 3417 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Escott-Price, V. & Hardy, J. Genome-wide association studies for Alzheimer’s disease: bigger is not always better. Brain Commun. 4, 1–7 (2022).

    Article 
    CAS 

    Google Scholar 

  • Korczyn, A. D. & Grinberg, L. T. Is Alzheimer disease a disease? Nat. Rev. Neurol. 20, 245–251 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Tucker-Drob, E. M. Cognitive aging and dementia: a life-span perspective. Annu. Rev. Dev. Psychol. 1, 177–196 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cole, J. H. & Franke, K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40, 681–690 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Vidal-Pineiro, D. et al. Individual variations in ‘brain age’ relate to early-life factors more than to longitudinal brain change. Elife 10, 1–19 (2021).

    Article 

    Google Scholar 

  • Demidenko, E. Mixed Models: Theory and Applications With R. (John Wiley & Sons, 2013).

  • Pinheiro, J. & Bates, D. Mixed-Effects Models in S and S-PLUS 1st edn, Vol. 528 (Springer-Verlag, 2000).

  • Nelson, E. A. & Dannefer, D. Aged heterogeneity: fact or fiction? the fate of diversity in gerontological research. Gerontologist 32, 17–23 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ferreira, D., Nordberg, A. & Westman, E. Biological subtypes of Alzheimer disease a systematic review and meta-analysis. Neurology. 94, 436–448 (2020).

  • Vogel, J. W. et al. Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat. Med. 27, 871–881 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mohanty, R., Ferreira, D., Nordberg, A. & Westman, E. Associations between different tau ‑ PET patterns and longitudinal atrophy in the Alzheimer’s disease continuum: biological and methodological perspectives from disease heterogeneity. Alzheimers. Res. Ther. 15, 37 (2023).

  • Cardinale, F. et al. Validation of FreeSurfer-estimated brain cortical thickness: comparison with histologic measurements. Neuroinformatics 12, 535–542 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Han, X. et al. Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32, 180–194 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Leng, Y., Ng, K. E. T., Vogrin, S. J., Meade, C. & Ngo, M. Comparative utility of manual versus automated segmentation of hippocampus and entorhinal cortex volumes in a memory clinic sample. J. Alzheimers Dis. 68, 159–171 (2019).

  • Hedges, E. P. et al. Reliability of structural MRI measurements: the effects of scan session, head tilt, inter-scan interval, acquisition sequence, FreeSurfer version and processing stream. Neuroimage 246, 118751 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • McGuire, S. A. et al. Reproducibility of quantitative structural and physiological MRI measurements. Brain Behav. 7, 1–17 (2017).

    Article 

    Google Scholar 

  • Ossenkoppele, R. et al. Amyloid and tau PET-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 28, 2381–2387 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Folstein, M. F., Folstein, S. E. & McHugh, P. R. Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Beck, A. T., Ward, C., Mendelson, M., Mock, J. & Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 4, 561 (1961).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yesavage, J. A. et al. Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiatr. Res. 17, 37–49 (1982).

    Article 
    PubMed 

    Google Scholar 

  • Nilsson, L. G. et al. The Betula prospective cohort study: memory, health, and aging. Aging Neuropsychol. Cogn. 4, 1–32 (1997).

    Article 

    Google Scholar 

  • Penninx, B. W. J. H. et al. Cohort profile of the longitudinal Netherlands study of depression and anxiety (NESDA) on etiology, course and consequences of depressive and anxiety disorders. J. Affect. Disord. 287, 69–77 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Weiner, M. W. et al. The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimer’s Dement. 8, S1–S68 (2012).

    Article 

    Google Scholar 

  • Chow, N. et al. Comparing 3T and 1.5T MRI for mapping hippocampal atrophy in the Alzheimer’s disease neuroimaging initiative. Am. J. Neuroradiol. 36, 653–660 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ellis, K. A. et al. The Australian imaging, biomarkers and lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int. Psychogeriatr. 21, 672–687 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hong, S. et al. TMEM106B and CPOX are genetic determinants of cerebrospinal fluid Alzheimer’s disease biomarker levels. Alzheimer’s Dement. 17, 1628–1640 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 53, 1276–1282 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, 2074–2093 (2006).

    Article 
    CAS 

    Google Scholar 

  • Reuter, M., Rosas, H. D. & Fischl, B. Highly accurate inverse consistent registration: a robust approach. Neuroimage 53, 1181–1196 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Fischl, B., Sereno, M. I., Tootell, R. B. & Dale, A. M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284 (1999).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Schöll, M. et al. PET imaging of Tau deposition in the aging human brain. Neuron 89, 971–982 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Franzmeier, N. et al. Functional brain architecture is associated with the rate of tau accumulation in Alzheimer’s disease. Nat. Commun. 11, 1–17 (2020).

    Article 

    Google Scholar 

  • Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models Using ‘mgcv’ and ‘lme4’. R Package Version 0.2-5. (2017).

  • Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (2016).

  • Delis, D. C., Kramer, J. H., Kaplan, E. & Thompkins, B. A. O. CVLT: California Verbal Learning Test-Adult Version: Manual, Vol. 91 (Psychological Corporation, 1987).

  • Roe, J. M. Brain Change Trajectories in Healthy Adults Correlate with Alzheimer’s Related Genetic Variation and Memory Decline Across Life. (2024).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *