Challenges for the human immune system after leaving Earth
Cooper, M. D. & Herrin, B. R. How did our complex immune system evolve? Nat. Rev. Immunol. 10, 2–3 (2010).
Google Scholar
Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B. & Schultze, J. L. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe 25, 13–26 (2019).
Google Scholar
Buchmann, K. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front. Immunol. 5, (2014).
Dzik, J. M. The ancestry and cumulative evolution of immune reactions. Acta Biochim. Pol. 57, 443–466 (2010).
Google Scholar
Yuen, B., Bayes, J. M. & Degnan, S. M. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol. Biol. Evol. 31, 106–120 (2014).
Google Scholar
Dower, S. K. Cytokines, virokines and the evolution of immunity. Nat. Immunol. 1, 367–368 (2000).
Google Scholar
Antczak, M., Cañete, P. F., Chen, Z., Belle, C. & Yu, D. Evolution of γ chain cytokines: mechanisms, methods and applications. Comput Struct. Biotechnol. J. 20, 4746–4755 (2022).
Google Scholar
Yu, S., Luo, F., Xu, Y., Zhang, Y. & Jin, L. H. Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues. Front. Immunol. 13, (2022).
Zhao, B.-R., Wang, X.-X., Liu, P.-P. & Wang, X.-W. Complement-related proteins in crustacean immunity. Dev. Comp. Immunol. 139, 104577 (2023).
Google Scholar
Smith, L. C. et al. in Advances in Comparative Immunology (ed Edwin L.C.) 409–501 (Springer International Publishing, 2018).
Smith, N. C., Rise, M. L. & Christian, S. L. A Comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front. Immunol. 10, (2019).
Willey, J. S. et al. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. J. Environ. Sci. Health C. 39, 129–179 (2021).
Google Scholar
Lv, H. et al. Microgravity and immune cells. J. R. Soc. Interface 20, 20220869 (2023).
Google Scholar
Barrila, J. et al. Evaluating the effect of spaceflight on the host–pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. NPJ Microgravity 7, 9 (2021).
Google Scholar
Parkin, J. & Cohen, B. An overview of the immune system. Lancet 357, 1777–1789 (2001).
Google Scholar
Alberts, B. et al. Molecular Biology of the Cell (Garland Science, 2002).
da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e1120 (2020).
Google Scholar
Kuzichkin, D. S. et al. Endothelial dysfunction markers and immune response indices in cosmonauts’ blood after long-duration space flights. NPJ Microgravity 8, 46 (2022).
Google Scholar
Gertz, M. L. et al. Multi-omic, single-cell, and biochemical profiles of astronauts guide pharmacological strategies for returning to gravity. Cell Rep. 33, 108429 (2020).
Google Scholar
Garrett-Bakelman, F. E. et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019).
Google Scholar
Buchheim, J. I. et al. Stress related shift toward inflammaging in cosmonauts after long-duration space flight. Front. Physiol. 10, 85 (2019).
Google Scholar
Marshall, J. S., Warrington, R., Watson, W. & Kim, H. L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14, 49 (2018).
Google Scholar
Kim, J. et al. Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight. Nat. Commun. 15, 4954 (2024).
Google Scholar
Radek, K. A. Antimicrobial anxiety: the impact of stress on antimicrobial immunity. J. Leukoc. Biol. 88, 263–277 (2010).
Google Scholar
Agha, N. H. et al. Salivary antimicrobial proteins and stress biomarkers are elevated during a 6-month mission to the International Space Station. J. Appl Physiol. 128, 264–275 (2020).
Google Scholar
Krieger, S. S. et al. Alterations in saliva and plasma cytokine concentrations during long-duration spaceflight. Front Immunol. 12, 725748 (2021).
Google Scholar
Seiler, A., Fagundes, C. P. & Christian, L. M. in Stress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies (ed A. Choukèr) 71–92 (Springer International Publishing, 2020).
Segerstrom, S. C. & Miller, G. E. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol. Bull. 130, 601–630 (2004).
Google Scholar
Crucian, B. E. et al. Countermeasures-based improvements in stress, immune system dysregulation and latent herpesvirus reactivation onboard the International Space Station—relevance for deep space missions and terrestrial medicine. Neurosci. Biobehav Rev. 115, 68–76 (2020).
Google Scholar
Mehta, S. K. et al. Latent virus reactivation in astronauts on the International Space Station. NPJ Microgravity 3, 11 (2017).
Google Scholar
Stowe, R. P., Pierson, D. L. & Barrett, A. D. Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosom. Med. 63, 891–895 (2001).
Google Scholar
Ran, F., An, L., Fan, Y., Hang, H. & Wang, S. Simulated microgravity potentiates generation of reactive oxygen species in cells. Biophys. Rep. 2, 100–105 (2016).
Google Scholar
Mauch, L. et al. Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD. Clin. Chem. 53, 890–896 (2007).
Google Scholar
Yarosz, E. L. & Chang, C. H. The role of reactive oxygen species in regulating T cell-mediated immunity and disease. Immune Netw. 18, e14 (2018).
Google Scholar
Gómez, X. et al. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 7, 35 (2021).
Google Scholar
Khanna, K. M., Bonneau, R. H., Kinchington, P. R. & Hendricks, R. L. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18, 593–603 (2003).
Google Scholar
Rooney, B. V., Crucian, B. E., Pierson, D. L., Laudenslager, M. L. & Mehta, S. K. Herpes virus reactivation in astronauts during spaceflight and its application on Earth. Front. Microbiol. 10, 16 (2019).
Google Scholar
Spielmann, G. et al. Latent viral reactivation is associated with changes in plasma antimicrobial protein concentrations during long-duration spaceflight. Acta Astronaut 146, 111–116 (2018).
Google Scholar
Mehta, S. K. et al. Dermatitis during Spaceflight Associated with HSV-1 Reactivation. Viruses 14, (2022).
Cohrs, R. J., Mehta, S. K., Schmid, D. S., Gilden, D. H. & Pierson, D. L. Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J. Med. Virol. 80, 1116–1122 (2008).
Google Scholar
Shi, L. et al. Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFκB and metabolic pathways. Cell Mol. Immunol. 18, 1489–1502 (2021).
Google Scholar
Fonte, C., Jacob, P., Vanet, A., Ghislin, S. & Frippiat, J. P. Hindlimb unloading, a physiological model of microgravity, modifies the murine bone marrow IgM repertoire in a similar manner as aging but less strongly. Immun. Ageing 20, 64 (2023).
Google Scholar
Buchheim, J. I. et al. Plasticity of the human IgM repertoire in response to long-term spaceflight. Faseb J. 34, 16144–16162 (2020).
Google Scholar
Juhl, O. J. T. et al. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 7, 28 (2021).
Google Scholar
Sonnenfeld, G. et al. Bed rest and immunity. Acta Astronaut 60, 234–236 (2007).
Google Scholar
Bonnefoy, J. et al. B-cell homeostasis is maintained during two months of head-down tilt bed rest with or without antioxidant supplementation. Front. Immunol. 13, (2022).
Epsley, S. et al. The effect of inflammation on bone. Front. Physiol. 11, (2021).
Crucian, B. et al. Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity 1, 15013 (2015).
Google Scholar
Spielmann, G. et al. B cell homeostasis is maintained during long-duration spaceflight. J. Appl Physiol. 126, 469–476 (2019).
Google Scholar
Kaur, I., Simons, E. R., Castro, V. A., Mark Ott, C. & Pierson, D. L. Changes in neutrophil functions in astronauts. Brain Behav. Immun. 18, 443–450 (2004).
Google Scholar
Jacob, P., Bonnefoy, J., Ghislin, S. & Frippiat, J.-P. Long-duration head-down tilt bed rest confirms the relevance of the neutrophil to lymphocyte ratio and suggests coupling it with the platelet to lymphocyte ratio to monitor the immune health of astronauts. Front. Immunol. 13, (2022).
Meshkov, D. & Rykova, M. The natural cytotoxicity in cosmonauts on board space stations. Acta Astronaut 36, 719–726 (1995).
Google Scholar
Konstantinova, I. V. et al. Natural killer cells after ALTAIR mission. Acta Astronaut 36, 713–718 (1995).
Google Scholar
Kaur, I., Simons, E. R., Castro, V. A., Ott, C. M. & Pierson, D. L. Changes in monocyte functions of astronauts. Brain Behav. Immun. 19, 547–554 (2005).
Google Scholar
Kaur, I., Simons, E. R., Kapadia, A. S., Ott, C. M. & Pierson, D. L. Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin. Vaccin. Immunol. 15, 1523–1528 (2008).
Google Scholar
Bigley, A. B. et al. NK cell function is impaired during long-duration spaceflight. J. Appl Physiol. (1985) 126, 842–853 (2019).
Google Scholar
Li, Q. et al. Effects of simulated microgravity on primary human NK cells. Astrobiology 13, 703–714 (2013).
Google Scholar
Ward, C. et al. Effects of spaceflight on the immunoglobulin repertoire of unimmunized C57BL/6 mice. Life Sci. Space Res. 16, 63–75 (2018).
Google Scholar
National Academies of Sciences, E. & Medicine. Thriving in Space: Ensuring the Future of Biological and Physical Sciences Research: A Decadal Survey for 2023-2032. (The National Academies Press, 2023).
O’Connor, C. & Adams, J. U. Essentials of Cell Biology, (2010).
Flood, D., Lee, E. S. & Taylor, C. T. Intracellular energy production and distribution in hypoxia. J. Biol. Chem. 299, (2023).
Junger, W. G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol. 11, 201–212 (2011).
Google Scholar
Sitkovsky, M. V. et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev. Immunol. 22, 657–682 (2004).
Google Scholar
Chen, Y. et al. Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci. Signal 3, ra45 (2010).
Google Scholar
Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).
Google Scholar
Feuerecker, M. et al. Immune sensitization during 1 year in the Antarctic high-altitude Concordia Environment. Allergy 74, 64–77 (2019).
Google Scholar
Ye, Z. et al. Decreased B and T lymphocyte attenuator in Behcet’s disease may trigger abnormal Th17 and Th1 immune responses. Sci. Rep. 6, 20401 (2016).
Google Scholar
Detre, C., Keszei, M., Romero, X., Tsokos, G. C. & Terhorst, C. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Semin Immunopathol. 32, 157–171 (2010).
Google Scholar
Feuerecker, M. et al. One year in the extreme isolation of Antarctica-is this enough to modulate an “allergic” sensitization? Biomedicines 10, (2022).
Strewe, C. et al. PlanHab study: consequences of combined normobaric hypoxia and bed rest on adenosine kinetics. Sci. Rep. 8, 1762 (2018).
Google Scholar
Pavletić, B. et al. Spaceflight virology: what do we know about viral threats in the spaceflight environment? Astrobiology 22, 210–224 (2022).
Google Scholar
Simpson, A. C. et al. Draft genome sequences of various bacterial phyla isolated from the International Space Station. Microbiol. Resour. Announc. 10, (2021).
Mora, M. et al. Space Station conditions are selective but do not alter microbial characteristics relevant to human health. Nat. Commun. 10, 3990 (2019).
Google Scholar
Bijlani, S., Stephens, E., Singh, N. K., Venkateswaran, K. & Wang, C. C. C. Advances in space microbiology. iScience 24, 102395 (2021).
Google Scholar
Baker, P. W., Meyer, M. L. & Leff, L. G. Escherichia coli growth under modeled reduced gravity. Microgravity Sci. Technol. 15, 39–44 (2004).
Google Scholar
England, L. S., Gorzelak, M. & Trevors, J. T. Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochim. Biophys. Acta 1624, 76–80 (2003).
Google Scholar
Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R. & Pierson, D. L. Microbial responses to microgravity and other low-shear environments. Microbiol. Mol. Biol. Rev. 68, 345–361 (2004).
Google Scholar
Zaccaria, T. et al. Survival of environment-derived opportunistic bacterial pathogens to martian conditions: is there a concern for human missions to Mars? Astrobiology 24, 100–113 (2024).
Google Scholar
Klaus, D., Simske, S., Todd, P. & Stodieck, L. Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143, 449–455 (1997).
Google Scholar
Horneck, G., Klaus, D. M. & Mancinelli, R. L. Space microbiology. Microbiol Mol. Biol. Rev. 74, 121–156 (2010).
Google Scholar
Tixador, R. et al. Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviat. Space Environ. Med. 56, 748–751 (1985).
Google Scholar
Wilson, J. W. et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl Acad. Sci. USA 104, 16299–16304 (2007).
Google Scholar
Lapchine, L. et al. Antibiotic activity in space. Drugs Exp. Clin. Res. 12, 933–938 (1986).
Google Scholar
McLean, R. J., Cassanto, J. M., Barnes, M. B. & Koo, J. H. Bacterial biofilm formation under microgravity conditions. FEMS Microbiol. Lett. 195, 115–119 (2001).
Google Scholar
Nickerson, C. A. et al. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 68, 3147–3152 (2000).
Google Scholar
Shree, P., Singh, C. K., Sodhi, K. K., Surya, J. N. & Singh, D. K. Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Med. Microecol. 16, 100084 (2023).
Google Scholar
Netea, M. G. et al. Immune recognition of putative alien microbial structures: host–pathogen interactions in the age of space travel. PLOS Pathog. 16, e1008153 (2020).
Google Scholar
Bharindwal, S., Goswami, N., Jha, P., Pandey, S. & Jobby, R. Prospective use of probiotics to maintain astronaut health during spaceflight. Life 13, 727 (2023).
Google Scholar
Tesei, D., Jewczynko, A., Lynch, A. M. & Urbaniak, C. Understanding the complexities and changes of the astronaut microbiome for successful long-duration space missions. Life 12, (2022).
Lencner, A. A. et al. [The quantitative composition of the intestinal lactoflora before and after space flights of different lengths]. Nahrung 28, 607–613 (1984).
Google Scholar
Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205–217 (2015).
Google Scholar
Tu, P. et al. Gut microbiome toxicity: connecting the environment and gut microbiome-associated diseases. Toxics 8, (2020).
Thayer, K. A., Heindel, J. J., Bucher, J. R. & Gallo, M. A. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ. Health Perspect. 120, 779–789 (2012).
Google Scholar
Liu, Z. et al. Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes 11, 807–819 (2020).
Google Scholar
Martínez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).
Google Scholar
Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
Google Scholar
Davenport, E. R. et al. The human microbiome in evolution. BMC Biol. 15, 127 (2017).
Google Scholar
De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).
Google Scholar
Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).
Google Scholar
Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl Acad. Sci. USA 109, 8334–8339 (2012).
Google Scholar
Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc. Natl Acad. Sci. USA 110, 18360–18367 (2013).
Google Scholar
Sugita, T. et al. Comprehensive analysis of the skin fungal microbiota of astronauts during a half-year stay at the International Space Station. Med. Mycol. 54, 232–239 (2016).
Google Scholar
Sugita, T., Yamazaki, T., Cho, O., Furukawa, S. & Mukai, C. The skin mycobiome of an astronaut during a 1-year stay on the International Space Station. Med. Mycol. 59, 106–109 (2021).
Google Scholar
Duscher, A. A., Vroom, M. M. & Foster, J. S. Impact of modeled microgravity stress on innate immunity in a beneficial animal-microbe symbiosis. Sci. Rep. 14, 2912 (2024).
Google Scholar
Henry, L. P., Bruijning, M., Forsberg, S. K. G. & Ayroles, J. F. The microbiome extends host evolutionary potential. Nat. Commun. 12, 5141 (2021).
Google Scholar
Hammond, T. G. & Birdsall, H. H. in Handbook of Space Pharmaceuticals (eds Y. Pathak, M. Araújo dos Santos, & L. Zea) 1-17 (Springer International Publishing, 2018).
Higginson, E., Galen, J., Levine, M. & Tennant, S. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria. Pathog. Dis. 74, ftw095 (2016).
Google Scholar
Scott, N. R., Mann, B., Tuomanen, E. I. & Orihuela, C. J. Multi-valent protein hybrid pneumococcal vaccines: a strategy for the next generation of vaccines. Vaccines 9, (2021).
Hunt, T. The middle way of evolution. Commun. Integr. Biol. 5, 408–421 (2012).
Google Scholar
Criscuolo, F., Sueur, C. & Bergouignan, A. Human adaptation to deep space environment: an evolutionary perspective of the foreseen interplanetary exploration. Front Public Health 8, 119 (2020).
Google Scholar
Gómez-Bruton, A., Gónzalez-Agüero, A., Gómez-Cabello, A., Casajús, J. A. & Vicente-Rodríguez, G. Is bone tissue really affected by swimming? A systematic review. PLoS One 8, e70119 (2013).
Google Scholar
Kashtan, N., Noor, E. & Alon, U. Varying environments can speed up evolution. Proc. Natl Acad. Sci. USA 104, 13711–13716 (2007).
Google Scholar
Gilman, R. T., Nuismer, S. L. & Jhwueng, D. C. Coevolution in multidimensional trait space favours escape from parasites and pathogens. Nature 483, 328–330 (2012).
Google Scholar
Tirumalai, M. R. et al. The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic. NPJ Microgravity 3, 15 (2017).
Google Scholar
Kawaguchi, Y. et al. DNA damage and survival time course of deinococcal cell pellets during 3 years of exposure to outer space. Front. Microbiol. 11, (2020).
Lindeboom, R. E. F. et al. Nitrogen cycle microorganisms can be reactivated after Space exposure. Sci. Rep. 8, 13783 (2018).
Google Scholar
Worldspaceflight.com. Astronaut/Cosmonaut Statistics – Who Is Currently In Space?, (2024).
Arguello, E. et al. An exploration of Mars colonization with agent-based modeling. arXiv preprint. (2023).
Furlan, E. et al. Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus. Ecol. Evol. 2, 844–857 (2012).
Google Scholar
Roy, P. Encyclopedia of Animal Cognition and Behavior (eds J. Vonk & T. K. Shackelford) 846-849 (Springer International Publishing, 2022).
Kaczorowski, K. J. et al. Continuous immunotypes describe human immune variation and predict diverse responses. Proc. Natl Acad. Sci. USA 114, E6097–e6106 (2017).
Google Scholar
Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).
Google Scholar
Warning, J. C., McCracken, S. A. & Morris, J. M. A balancing act: mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction 141, 715–724 (2011).
Google Scholar
Aluvihare, V. R., Kallikourdis, M. & Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).
Google Scholar
Moffett, A. & Colucci, F. Uterine NK cells: active regulators at the maternal-fetal interface. J. Clin. Invest 124, 1872–1879 (2014).
Google Scholar
ACOG Committee Opinion No. 753: Assessment and treatment of pregnant women with suspected or confirmed influenza. Obstet. Gynecol. 132, e169-e173 (2018).
Ponnappan, S. & Ponnappan, U. Aging and immune function: molecular mechanisms to interventions. Antioxid. Redox Signal 14, 1551–1585 (2011).
Google Scholar
Rubelt, F. et al. Onset of immune senescence defined by unbiased pyrosequencing of human immunoglobulin mRNA repertoires. Plos One 7, e49774 (2012).
Google Scholar
Strachan, D. P. Hay fever, hygiene, and household size. Bmj 299, 1259–1260 (1989).
Google Scholar
Neu, J. & Rushing, J. Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis. Clin. Perinatol. 38, 321–331 (2011).
Google Scholar
Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).
Google Scholar
Collado, M. C., Cernada, M., Baüerl, C., Vento, M. & Pérez-Martínez, G. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes 3, 352–365 (2012).
Google Scholar
Goenka, A. & Kollmann, T. R. Development of immunity in early life. J. Infect. 71, S112–S120 (2015).
Google Scholar
Illi, S. et al. Protection from childhood asthma and allergy in Alpine farm environments-the GABRIEL advanced studies. J. Allergy Clin. Immunol. 129, 1470–1477.e1476 (2012).
Google Scholar
Krämer, U. et al. Airway diseases and allergies in East and West German children during the first 5 years after reunification. Int J. Epidemiol. 28, 865–873 (1999).
Google Scholar
Rook, G. A., Lowry, C. A. & Raison, C. L. Microbial ‘Old Friends’, immunoregulation and stress resilience. Evol. Med Public Health 2013, 46–64 (2013).
Google Scholar
Agha, N. H. et al. Exercise as a countermeasure for latent viral reactivation during long duration space flight. Faseb J. 34, 2869–2881 (2020).
Google Scholar
Cunningham-Rundles, S., McNeeley, D. F. & Moon, A. Mechanisms of nutrient modulation of the immune response. J. Allergy Clin. Immunol. 115, 1119–1128 (2005). quiz 1129.
Google Scholar
Sakai, T. et al. Probiotics into outer space: feasibility assessments of encapsulated freeze-dried probiotics during 1 month’s storage on the International Space Station. Sci. Rep. 8, 10687 (2018).
Google Scholar
Turroni, S. et al. Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500. Microbiome 5, 39 (2017).
Google Scholar
Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).
Google Scholar
Turroni, S. et al. Gut microbiome and space travelers’ health: state of the art and possible pro/prebiotic strategies for long-term space missions. Front. Physiol. 11, (2020).
Bukley, A., Paloski, W. H., and Clément, G. Physics of Artificial Gravity in Artificial Gravity. The Space Technology Library (eds G. Clément & A. Bukley), Springer, New York, NY. (2007).
Biolo, G. et al. Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest. Am. J. Clin. Nutr. 86, 366–372 (2007).
Google Scholar
Bosutti, A. et al. Calorie restriction modulates inactivity-induced changes in the inflammatory markers C-reactive protein and pentraxin-3. J. Clin. Endocrinol. Metab. 93, 3226–3229 (2008).
Google Scholar
Kang, M. et al. Supplementation of fermented Maillard-reactive whey protein enhances immunity by increasing NK cell activity. Food Funct. 8, 1718–1725 (2017).
Google Scholar
Park, O. J., Kim, H. Y., Kim, W. K., Kim, Y. J. & Kim, S. H. Effect of vitamin E supplementation on antioxidant defense systems and humoral immune responses in young, middle-aged and elderly Korean women. J. Nutr. Sci. Vitaminol. 49, 94–99 (2003).
Google Scholar
Gibson, A. et al. Effect of fruit and vegetable consumption on immune function in older people: a randomized controlled trial. Am. J. Clin. Nutr. 96, 1429–1436 (2012).
Google Scholar
Douglas, G. L. & Voorhies, A. A. Evidence based selection of probiotic strains to promote astronaut health or alleviate symptoms of illness on long duration spaceflight missions. Benef. Microbes 8, 727–737 (2017).
Google Scholar
US Food and Drug Administration. Guidance for Industry: Frequently Asked Questions About GRAS for Substances Intended for Use in Human or Animal Food, (2016).
Crucian, B. E. et al. Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front. Immunol. 9, (2018).
Makedonas, G. et al. Specific immunologic countermeasure protocol for deep-space exploration missions. Front. Immunol. 10, (2019).
Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet 11, 47–59 (2010).
Google Scholar
Buchheim, J.-I. et al. Monitoring functional immune responses with a cytokine release assay: ISS flight hardware design and experimental protocol for whole blood cultures executed under microgravity conditions. Front. Physiol. 14, (2024).
University of California Space Health Program. Space Aging Gravity Experiment (A.G.E.), (2024).
Chancellor, J. C., Scott, G. B. I. & Sutton, J. P. Space radiation: the number one risk to astronaut health beyond low Earth orbit. Life 4, 491–510 (2014).
Google Scholar
Blaber, E., Marçal, H. & Burns, B. P. Bioastronautics: the influence of microgravity on astronaut health. Astrobiology 10, 463–473 (2010).
Google Scholar
Ponomarev, S. et al. Immunological aspects of isolation and confinement. Front. Immunol. 12, (2021).
Arone, A. et al. The burden of space exploration on the mental health of astronauts: a narrative review. Clin. Neuropsychiatry 18, 237–246 (2021).
Google Scholar
Slack, K. J., Williams, T. J., Schneiderman, J. S., Whitmire, A. M., Picano, J. J. Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders. 123 (NASA, Housten Texas 2016).
Scott, J. M. et al. Effects of exercise countermeasures on multisystem function in long duration spaceflight astronauts. NPJ Microgravity 9, 11 (2023).
Google Scholar
Taylor, A. J. et al. Factors affecting flavor perception in space: does the spacecraft environment influence food intake by astronauts? Compr. Rev. Food Sci. Food Saf. 19, 3439–3475 (2020).
Google Scholar
Monk, T. H., Buysse, D. J., Billy, B. D., Kennedy, K. S. & Willrich, L. M. Sleep and Circadian Rhythms in Four Orbiting Astronauts. J. Biol. Rhythms 13, 188–201 (1998).
Google Scholar
Jancy C. McPhee, J. B. C. Human health and performance risks of space exploration missions 389 (NASA, Housten Texas 77058, 2009).
Buchheim, J.-I., Feuerecker, M. & Choukér, A. in Stress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies (ed A. Choukèr) 221-240 (Springer International Publishing, 2020).
link