Challenges for the human immune system after leaving Earth

0
  • Cooper, M. D. & Herrin, B. R. How did our complex immune system evolve? Nat. Rev. Immunol. 10, 2–3 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Netea, M. G., Schlitzer, A., Placek, K., Joosten, L. A. B. & Schultze, J. L. Innate and adaptive immune memory: an evolutionary continuum in the host’s response to pathogens. Cell Host Microbe 25, 13–26 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Buchmann, K. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front. Immunol. 5, (2014).

  • Dzik, J. M. The ancestry and cumulative evolution of immune reactions. Acta Biochim. Pol. 57, 443–466 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuen, B., Bayes, J. M. & Degnan, S. M. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol. Biol. Evol. 31, 106–120 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dower, S. K. Cytokines, virokines and the evolution of immunity. Nat. Immunol. 1, 367–368 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Antczak, M., Cañete, P. F., Chen, Z., Belle, C. & Yu, D. Evolution of γ chain cytokines: mechanisms, methods and applications. Comput Struct. Biotechnol. J. 20, 4746–4755 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, S., Luo, F., Xu, Y., Zhang, Y. & Jin, L. H. Drosophila innate immunity involves multiple signaling pathways and coordinated communication between different tissues. Front. Immunol. 13, (2022).

  • Zhao, B.-R., Wang, X.-X., Liu, P.-P. & Wang, X.-W. Complement-related proteins in crustacean immunity. Dev. Comp. Immunol. 139, 104577 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, L. C. et al. in Advances in Comparative Immunology (ed Edwin L.C.) 409–501 (Springer International Publishing, 2018).

  • Smith, N. C., Rise, M. L. & Christian, S. L. A Comparison of the innate and adaptive immune systems in cartilaginous fish, ray-finned fish, and lobe-finned fish. Front. Immunol. 10, (2019).

  • Willey, J. S. et al. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. J. Environ. Sci. Health C. 39, 129–179 (2021).

    CAS 

    Google Scholar 

  • Lv, H. et al. Microgravity and immune cells. J. R. Soc. Interface 20, 20220869 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barrila, J. et al. Evaluating the effect of spaceflight on the host–pathogen interaction between human intestinal epithelial cells and Salmonella Typhimurium. NPJ Microgravity 7, 9 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parkin, J. & Cohen, B. An overview of the immune system. Lancet 357, 1777–1789 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alberts, B. et al. Molecular Biology of the Cell (Garland Science, 2002).

  • da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e1120 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuzichkin, D. S. et al. Endothelial dysfunction markers and immune response indices in cosmonauts’ blood after long-duration space flights. NPJ Microgravity 8, 46 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gertz, M. L. et al. Multi-omic, single-cell, and biochemical profiles of astronauts guide pharmacological strategies for returning to gravity. Cell Rep. 33, 108429 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garrett-Bakelman, F. E. et al. The NASA twins study: a multidimensional analysis of a year-long human spaceflight. Science 364, eaau8650 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchheim, J. I. et al. Stress related shift toward inflammaging in cosmonauts after long-duration space flight. Front. Physiol. 10, 85 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marshall, J. S., Warrington, R., Watson, W. & Kim, H. L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 14, 49 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, J. et al. Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight. Nat. Commun. 15, 4954 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Radek, K. A. Antimicrobial anxiety: the impact of stress on antimicrobial immunity. J. Leukoc. Biol. 88, 263–277 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agha, N. H. et al. Salivary antimicrobial proteins and stress biomarkers are elevated during a 6-month mission to the International Space Station. J. Appl Physiol. 128, 264–275 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krieger, S. S. et al. Alterations in saliva and plasma cytokine concentrations during long-duration spaceflight. Front Immunol. 12, 725748 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seiler, A., Fagundes, C. P. & Christian, L. M. in Stress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies (ed A. Choukèr) 71–92 (Springer International Publishing, 2020).

  • Segerstrom, S. C. & Miller, G. E. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol. Bull. 130, 601–630 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crucian, B. E. et al. Countermeasures-based improvements in stress, immune system dysregulation and latent herpesvirus reactivation onboard the International Space Station—relevance for deep space missions and terrestrial medicine. Neurosci. Biobehav Rev. 115, 68–76 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mehta, S. K. et al. Latent virus reactivation in astronauts on the International Space Station. NPJ Microgravity 3, 11 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stowe, R. P., Pierson, D. L. & Barrett, A. D. Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosom. Med. 63, 891–895 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ran, F., An, L., Fan, Y., Hang, H. & Wang, S. Simulated microgravity potentiates generation of reactive oxygen species in cells. Biophys. Rep. 2, 100–105 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mauch, L. et al. Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD. Clin. Chem. 53, 890–896 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yarosz, E. L. & Chang, C. H. The role of reactive oxygen species in regulating T cell-mediated immunity and disease. Immune Netw. 18, e14 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gómez, X. et al. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 7, 35 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khanna, K. M., Bonneau, R. H., Kinchington, P. R. & Hendricks, R. L. Herpes simplex virus-specific memory CD8+ T cells are selectively activated and retained in latently infected sensory ganglia. Immunity 18, 593–603 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rooney, B. V., Crucian, B. E., Pierson, D. L., Laudenslager, M. L. & Mehta, S. K. Herpes virus reactivation in astronauts during spaceflight and its application on Earth. Front. Microbiol. 10, 16 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spielmann, G. et al. Latent viral reactivation is associated with changes in plasma antimicrobial protein concentrations during long-duration spaceflight. Acta Astronaut 146, 111–116 (2018).

    Article 
    CAS 

    Google Scholar 

  • Mehta, S. K. et al. Dermatitis during Spaceflight Associated with HSV-1 Reactivation. Viruses 14, (2022).

  • Cohrs, R. J., Mehta, S. K., Schmid, D. S., Gilden, D. H. & Pierson, D. L. Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J. Med. Virol. 80, 1116–1122 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, L. et al. Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFκB and metabolic pathways. Cell Mol. Immunol. 18, 1489–1502 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fonte, C., Jacob, P., Vanet, A., Ghislin, S. & Frippiat, J. P. Hindlimb unloading, a physiological model of microgravity, modifies the murine bone marrow IgM repertoire in a similar manner as aging but less strongly. Immun. Ageing 20, 64 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchheim, J. I. et al. Plasticity of the human IgM repertoire in response to long-term spaceflight. Faseb J. 34, 16144–16162 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Juhl, O. J. T. et al. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 7, 28 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonnenfeld, G. et al. Bed rest and immunity. Acta Astronaut 60, 234–236 (2007).

    Article 

    Google Scholar 

  • Bonnefoy, J. et al. B-cell homeostasis is maintained during two months of head-down tilt bed rest with or without antioxidant supplementation. Front. Immunol. 13, (2022).

  • Epsley, S. et al. The effect of inflammation on bone. Front. Physiol. 11, (2021).

  • Crucian, B. et al. Alterations in adaptive immunity persist during long-duration spaceflight. NPJ Microgravity 1, 15013 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spielmann, G. et al. B cell homeostasis is maintained during long-duration spaceflight. J. Appl Physiol. 126, 469–476 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaur, I., Simons, E. R., Castro, V. A., Mark Ott, C. & Pierson, D. L. Changes in neutrophil functions in astronauts. Brain Behav. Immun. 18, 443–450 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jacob, P., Bonnefoy, J., Ghislin, S. & Frippiat, J.-P. Long-duration head-down tilt bed rest confirms the relevance of the neutrophil to lymphocyte ratio and suggests coupling it with the platelet to lymphocyte ratio to monitor the immune health of astronauts. Front. Immunol. 13, (2022).

  • Meshkov, D. & Rykova, M. The natural cytotoxicity in cosmonauts on board space stations. Acta Astronaut 36, 719–726 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Konstantinova, I. V. et al. Natural killer cells after ALTAIR mission. Acta Astronaut 36, 713–718 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaur, I., Simons, E. R., Castro, V. A., Ott, C. M. & Pierson, D. L. Changes in monocyte functions of astronauts. Brain Behav. Immun. 19, 547–554 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaur, I., Simons, E. R., Kapadia, A. S., Ott, C. M. & Pierson, D. L. Effect of spaceflight on ability of monocytes to respond to endotoxins of gram-negative bacteria. Clin. Vaccin. Immunol. 15, 1523–1528 (2008).

    Article 
    CAS 

    Google Scholar 

  • Bigley, A. B. et al. NK cell function is impaired during long-duration spaceflight. J. Appl Physiol. (1985) 126, 842–853 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Q. et al. Effects of simulated microgravity on primary human NK cells. Astrobiology 13, 703–714 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ward, C. et al. Effects of spaceflight on the immunoglobulin repertoire of unimmunized C57BL/6 mice. Life Sci. Space Res. 16, 63–75 (2018).

    Article 

    Google Scholar 

  • National Academies of Sciences, E. & Medicine. Thriving in Space: Ensuring the Future of Biological and Physical Sciences Research: A Decadal Survey for 2023-2032. (The National Academies Press, 2023).

  • O’Connor, C. & Adams, J. U. Essentials of Cell Biology, (2010).

  • Flood, D., Lee, E. S. & Taylor, C. T. Intracellular energy production and distribution in hypoxia. J. Biol. Chem. 299, (2023).

  • Junger, W. G. Immune cell regulation by autocrine purinergic signalling. Nat. Rev. Immunol. 11, 201–212 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sitkovsky, M. V. et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev. Immunol. 22, 657–682 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. Purinergic signaling: a fundamental mechanism in neutrophil activation. Sci. Signal 3, ra45 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feuerecker, M. et al. Immune sensitization during 1 year in the Antarctic high-altitude Concordia Environment. Allergy 74, 64–77 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, Z. et al. Decreased B and T lymphocyte attenuator in Behcet’s disease may trigger abnormal Th17 and Th1 immune responses. Sci. Rep. 6, 20401 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Detre, C., Keszei, M., Romero, X., Tsokos, G. C. & Terhorst, C. SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Semin Immunopathol. 32, 157–171 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feuerecker, M. et al. One year in the extreme isolation of Antarctica-is this enough to modulate an “allergic” sensitization? Biomedicines 10, (2022).

  • Strewe, C. et al. PlanHab study: consequences of combined normobaric hypoxia and bed rest on adenosine kinetics. Sci. Rep. 8, 1762 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pavletić, B. et al. Spaceflight virology: what do we know about viral threats in the spaceflight environment? Astrobiology 22, 210–224 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simpson, A. C. et al. Draft genome sequences of various bacterial phyla isolated from the International Space Station. Microbiol. Resour. Announc. 10, (2021).

  • Mora, M. et al. Space Station conditions are selective but do not alter microbial characteristics relevant to human health. Nat. Commun. 10, 3990 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bijlani, S., Stephens, E., Singh, N. K., Venkateswaran, K. & Wang, C. C. C. Advances in space microbiology. iScience 24, 102395 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baker, P. W., Meyer, M. L. & Leff, L. G. Escherichia coli growth under modeled reduced gravity. Microgravity Sci. Technol. 15, 39–44 (2004).

    Article 
    PubMed 

    Google Scholar 

  • England, L. S., Gorzelak, M. & Trevors, J. T. Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochim. Biophys. Acta 1624, 76–80 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R. & Pierson, D. L. Microbial responses to microgravity and other low-shear environments. Microbiol. Mol. Biol. Rev. 68, 345–361 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaccaria, T. et al. Survival of environment-derived opportunistic bacterial pathogens to martian conditions: is there a concern for human missions to Mars? Astrobiology 24, 100–113 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Klaus, D., Simske, S., Todd, P. & Stodieck, L. Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143, 449–455 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horneck, G., Klaus, D. M. & Mancinelli, R. L. Space microbiology. Microbiol Mol. Biol. Rev. 74, 121–156 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tixador, R. et al. Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviat. Space Environ. Med. 56, 748–751 (1985).

    CAS 
    PubMed 

    Google Scholar 

  • Wilson, J. W. et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl Acad. Sci. USA 104, 16299–16304 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lapchine, L. et al. Antibiotic activity in space. Drugs Exp. Clin. Res. 12, 933–938 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • McLean, R. J., Cassanto, J. M., Barnes, M. B. & Koo, J. H. Bacterial biofilm formation under microgravity conditions. FEMS Microbiol. Lett. 195, 115–119 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nickerson, C. A. et al. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 68, 3147–3152 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shree, P., Singh, C. K., Sodhi, K. K., Surya, J. N. & Singh, D. K. Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Med. Microecol. 16, 100084 (2023).

    Article 

    Google Scholar 

  • Netea, M. G. et al. Immune recognition of putative alien microbial structures: host–pathogen interactions in the age of space travel. PLOS Pathog. 16, e1008153 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bharindwal, S., Goswami, N., Jha, P., Pandey, S. & Jobby, R. Prospective use of probiotics to maintain astronaut health during spaceflight. Life 13, 727 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tesei, D., Jewczynko, A., Lynch, A. M. & Urbaniak, C. Understanding the complexities and changes of the astronaut microbiome for successful long-duration space missions. Life 12, (2022).

  • Lencner, A. A. et al. [The quantitative composition of the intestinal lactoflora before and after space flights of different lengths]. Nahrung 28, 607–613 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ananthakrishnan, A. N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 205–217 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Tu, P. et al. Gut microbiome toxicity: connecting the environment and gut microbiome-associated diseases. Toxics 8, (2020).

  • Thayer, K. A., Heindel, J. J., Bucher, J. R. & Gallo, M. A. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ. Health Perspect. 120, 779–789 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. et al. Effects of spaceflight on the composition and function of the human gut microbiota. Gut Microbes 11, 807–819 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez, I. et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davenport, E. R. et al. The human microbiome in evolution. BMC Biol. 15, 127 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl Acad. Sci. USA 109, 8334–8339 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc. Natl Acad. Sci. USA 110, 18360–18367 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sugita, T. et al. Comprehensive analysis of the skin fungal microbiota of astronauts during a half-year stay at the International Space Station. Med. Mycol. 54, 232–239 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sugita, T., Yamazaki, T., Cho, O., Furukawa, S. & Mukai, C. The skin mycobiome of an astronaut during a 1-year stay on the International Space Station. Med. Mycol. 59, 106–109 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duscher, A. A., Vroom, M. M. & Foster, J. S. Impact of modeled microgravity stress on innate immunity in a beneficial animal-microbe symbiosis. Sci. Rep. 14, 2912 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Henry, L. P., Bruijning, M., Forsberg, S. K. G. & Ayroles, J. F. The microbiome extends host evolutionary potential. Nat. Commun. 12, 5141 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammond, T. G. & Birdsall, H. H. in Handbook of Space Pharmaceuticals (eds Y. Pathak, M. Araújo dos Santos, & L. Zea) 1-17 (Springer International Publishing, 2018).

  • Higginson, E., Galen, J., Levine, M. & Tennant, S. Microgravity as a biological tool to examine host-pathogen interactions and to guide development of therapeutics and preventatives that target pathogenic bacteria. Pathog. Dis. 74, ftw095 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, N. R., Mann, B., Tuomanen, E. I. & Orihuela, C. J. Multi-valent protein hybrid pneumococcal vaccines: a strategy for the next generation of vaccines. Vaccines 9, (2021).

  • Hunt, T. The middle way of evolution. Commun. Integr. Biol. 5, 408–421 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Criscuolo, F., Sueur, C. & Bergouignan, A. Human adaptation to deep space environment: an evolutionary perspective of the foreseen interplanetary exploration. Front Public Health 8, 119 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gómez-Bruton, A., Gónzalez-Agüero, A., Gómez-Cabello, A., Casajús, J. A. & Vicente-Rodríguez, G. Is bone tissue really affected by swimming? A systematic review. PLoS One 8, e70119 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kashtan, N., Noor, E. & Alon, U. Varying environments can speed up evolution. Proc. Natl Acad. Sci. USA 104, 13711–13716 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilman, R. T., Nuismer, S. L. & Jhwueng, D. C. Coevolution in multidimensional trait space favours escape from parasites and pathogens. Nature 483, 328–330 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tirumalai, M. R. et al. The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic. NPJ Microgravity 3, 15 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawaguchi, Y. et al. DNA damage and survival time course of deinococcal cell pellets during 3 years of exposure to outer space. Front. Microbiol. 11, (2020).

  • Lindeboom, R. E. F. et al. Nitrogen cycle microorganisms can be reactivated after Space exposure. Sci. Rep. 8, 13783 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Worldspaceflight.com. Astronaut/Cosmonaut Statistics – Who Is Currently In Space?, (2024).

  • Arguello, E. et al. An exploration of Mars colonization with agent-based modeling. arXiv preprint. (2023).

  • Furlan, E. et al. Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus. Ecol. Evol. 2, 844–857 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roy, P. Encyclopedia of Animal Cognition and Behavior (eds J. Vonk & T. K. Shackelford) 846-849 (Springer International Publishing, 2022).

  • Kaczorowski, K. J. et al. Continuous immunotypes describe human immune variation and predict diverse responses. Proc. Natl Acad. Sci. USA 114, E6097–e6106 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Warning, J. C., McCracken, S. A. & Morris, J. M. A balancing act: mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction 141, 715–724 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aluvihare, V. R., Kallikourdis, M. & Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moffett, A. & Colucci, F. Uterine NK cells: active regulators at the maternal-fetal interface. J. Clin. Invest 124, 1872–1879 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • ACOG Committee Opinion No. 753: Assessment and treatment of pregnant women with suspected or confirmed influenza. Obstet. Gynecol. 132, e169-e173 (2018).

  • Ponnappan, S. & Ponnappan, U. Aging and immune function: molecular mechanisms to interventions. Antioxid. Redox Signal 14, 1551–1585 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubelt, F. et al. Onset of immune senescence defined by unbiased pyrosequencing of human immunoglobulin mRNA repertoires. Plos One 7, e49774 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strachan, D. P. Hay fever, hygiene, and household size. Bmj 299, 1259–1260 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neu, J. & Rushing, J. Cesarean versus vaginal delivery: long-term infant outcomes and the hygiene hypothesis. Clin. Perinatol. 38, 321–331 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collado, M. C., Cernada, M., Baüerl, C., Vento, M. & Pérez-Martínez, G. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes 3, 352–365 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goenka, A. & Kollmann, T. R. Development of immunity in early life. J. Infect. 71, S112–S120 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Illi, S. et al. Protection from childhood asthma and allergy in Alpine farm environments-the GABRIEL advanced studies. J. Allergy Clin. Immunol. 129, 1470–1477.e1476 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Krämer, U. et al. Airway diseases and allergies in East and West German children during the first 5 years after reunification. Int J. Epidemiol. 28, 865–873 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Rook, G. A., Lowry, C. A. & Raison, C. L. Microbial ‘Old Friends’, immunoregulation and stress resilience. Evol. Med Public Health 2013, 46–64 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agha, N. H. et al. Exercise as a countermeasure for latent viral reactivation during long duration space flight. Faseb J. 34, 2869–2881 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cunningham-Rundles, S., McNeeley, D. F. & Moon, A. Mechanisms of nutrient modulation of the immune response. J. Allergy Clin. Immunol. 115, 1119–1128 (2005). quiz 1129.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sakai, T. et al. Probiotics into outer space: feasibility assessments of encapsulated freeze-dried probiotics during 1 month’s storage on the International Space Station. Sci. Rep. 8, 10687 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turroni, S. et al. Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500. Microbiome 5, 39 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turroni, S. et al. Gut microbiome and space travelers’ health: state of the art and possible pro/prebiotic strategies for long-term space missions. Front. Physiol. 11, (2020).

  • Bukley, A., Paloski, W. H., and Clément, G. Physics of Artificial Gravity in Artificial Gravity. The Space Technology Library (eds G. Clément & A. Bukley), Springer, New York, NY. (2007).

  • Biolo, G. et al. Calorie restriction accelerates the catabolism of lean body mass during 2 wk of bed rest. Am. J. Clin. Nutr. 86, 366–372 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bosutti, A. et al. Calorie restriction modulates inactivity-induced changes in the inflammatory markers C-reactive protein and pentraxin-3. J. Clin. Endocrinol. Metab. 93, 3226–3229 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kang, M. et al. Supplementation of fermented Maillard-reactive whey protein enhances immunity by increasing NK cell activity. Food Funct. 8, 1718–1725 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Park, O. J., Kim, H. Y., Kim, W. K., Kim, Y. J. & Kim, S. H. Effect of vitamin E supplementation on antioxidant defense systems and humoral immune responses in young, middle-aged and elderly Korean women. J. Nutr. Sci. Vitaminol. 49, 94–99 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gibson, A. et al. Effect of fruit and vegetable consumption on immune function in older people: a randomized controlled trial. Am. J. Clin. Nutr. 96, 1429–1436 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Douglas, G. L. & Voorhies, A. A. Evidence based selection of probiotic strains to promote astronaut health or alleviate symptoms of illness on long duration spaceflight missions. Benef. Microbes 8, 727–737 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • US Food and Drug Administration. Guidance for Industry: Frequently Asked Questions About GRAS for Substances Intended for Use in Human or Animal Food, (2016).

  • Crucian, B. E. et al. Immune system dysregulation during spaceflight: potential countermeasures for deep space exploration missions. Front. Immunol. 9, (2018).

  • Makedonas, G. et al. Specific immunologic countermeasure protocol for deep-space exploration missions. Front. Immunol. 10, (2019).

  • Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet 11, 47–59 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Buchheim, J.-I. et al. Monitoring functional immune responses with a cytokine release assay: ISS flight hardware design and experimental protocol for whole blood cultures executed under microgravity conditions. Front. Physiol. 14, (2024).

  • University of California Space Health Program. Space Aging Gravity Experiment (A.G.E.), (2024).

  • Chancellor, J. C., Scott, G. B. I. & Sutton, J. P. Space radiation: the number one risk to astronaut health beyond low Earth orbit. Life 4, 491–510 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blaber, E., Marçal, H. & Burns, B. P. Bioastronautics: the influence of microgravity on astronaut health. Astrobiology 10, 463–473 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Ponomarev, S. et al. Immunological aspects of isolation and confinement. Front. Immunol. 12, (2021).

  • Arone, A. et al. The burden of space exploration on the mental health of astronauts: a narrative review. Clin. Neuropsychiatry 18, 237–246 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Slack, K. J., Williams, T. J., Schneiderman, J. S., Whitmire, A. M., Picano, J. J. Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric Disorders. 123 (NASA, Housten Texas 2016).

  • Scott, J. M. et al. Effects of exercise countermeasures on multisystem function in long duration spaceflight astronauts. NPJ Microgravity 9, 11 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor, A. J. et al. Factors affecting flavor perception in space: does the spacecraft environment influence food intake by astronauts? Compr. Rev. Food Sci. Food Saf. 19, 3439–3475 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Monk, T. H., Buysse, D. J., Billy, B. D., Kennedy, K. S. & Willrich, L. M. Sleep and Circadian Rhythms in Four Orbiting Astronauts. J. Biol. Rhythms 13, 188–201 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jancy C. McPhee, J. B. C. Human health and performance risks of space exploration missions 389 (NASA, Housten Texas 77058, 2009).

  • Buchheim, J.-I., Feuerecker, M. & Choukér, A. in Stress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies (ed A. Choukèr) 221-240 (Springer International Publishing, 2020).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *