Neutrophil diversity and function in health and disease
Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. Baltim. Md 1950 172, 2731–2738 (2004).
Google Scholar
Ng, L. G., Ostuni, R. & Hidalgo, A. Heterogeneity of neutrophils. Nat. Rev. Immunol. 19, 255–265 (2019).
Google Scholar
Tak, T., Tesselaar, K., Pillay, J., Borghans, J. A. M. & Koenderman, L. What’s your age again? Determination of human neutrophil half-lives revisited. J. Leukoc. Biol. 94, 595–601 (2013).
Google Scholar
Borregaard, N. Neutrophils, from marrow to microbes. Immunity 33, 657–670 (2010).
Google Scholar
Carnevale, S. et al. Neutrophil diversity in inflammation and cancer. Front. Immunol. 14, 1180810 (2023).
Google Scholar
Lahoz-Beneytez, J. et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood 127, 3431–3438 (2016).
Google Scholar
Ng, M. S. F. et al. Deterministic reprogramming of neutrophils within tumors. Science 383, eadf6493 (2024).
Google Scholar
Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6, 173–182 (2006).
Google Scholar
Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).
Google Scholar
Sadik, C. D., Kim, N. D. & Luster, A. D. Neutrophils cascading their way to inflammation. Trends Immunol. 32, 452–460 (2011).
Google Scholar
Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 10, 427–439 (2010).
Google Scholar
Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).
Google Scholar
Dotta, L., Tassone, L. & Badolato, R. Clinical and genetic features of Warts, Hypogammaglobulinemia, Infections and Myelokathexis (WHIM) syndrome. Curr. Mol. Med. 11, 317–325 (2011).
Google Scholar
Zeidler, C., Germeshausen, M., Klein, C. & Welte, K. Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. Br. J. Haematol. 144, 459–467 (2009).
Google Scholar
Silvestre-Roig, C., Hidalgo, A. & Soehnlein, O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 127, 2173–2181 (2016).
Google Scholar
Liew, P. X. & Kubes, P. The neutrophil’s role during health and disease. Physiol. Rev. 99, 1223–1248 (2019).
Google Scholar
Futosi, K., Fodor, S. & Mócsai, A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int. Immunopharmacol. 17, 638–650 (2013).
Google Scholar
Wang, K. L., Chen, S. N., Li, L., Huo, H. J. & Nie, P. Functional characterization of four TIR domain-containing adaptors, MyD88, TRIF, MAL, and SARM in mandarin fish Siniperca chuatsi. Dev. Comp. Immunol. 122, 104110 (2021).
Google Scholar
Fetz, A. E., Radic, M. Z. & Bowlin, G. L. Human neutrophil FcγRIIIb regulates neutrophil extracellular trap release in response to electrospun polydioxanone biomaterials. Acta Biomater. 130, 281–290 (2021).
Google Scholar
Syrovatkina, V., Alegre, K. O., Dey, R. & Huang, X.-Y. Regulation, signaling, and physiological functions of G-proteins. J. Mol. Biol. 428, 3850–3868 (2016).
Google Scholar
Futosi, K. & Mócsai, A. Tyrosine kinase signaling pathways in neutrophils. Immunol. Rev. 273, 121–139 (2016).
Google Scholar
Bouti, P. et al. β2 integrin signaling cascade in neutrophils: more than a single function. Front. Immunol. 11, 619925 (2020).
Google Scholar
Rajarathnam, K., Schnoor, M., Richardson, R. M. & Rajagopal, S. How do chemokines navigate neutrophils to the target site: dissecting the structural mechanisms and signaling pathways. Cell. Signal. 54, 69–80 (2019).
Google Scholar
van Leeuwenhoek, A. Microscopical Observations from Mr. Leeuwenhoek, about Blood, Milk, Bones, the Brain, Spitle, Cuticula, Sweat, Fatt, Teares: Communicated in Two Letters to the Publisher … (Royal Society, 1674).
Hajdu, S. I. A note from history: the discovery of blood cells. Ann. Clin. Lab. Sci. 33, 237–238 (2003).
Google Scholar
Kay, A. B. The early history of the eosinophil. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 45, 575–582 (2015).
Google Scholar
Kay, A. B. Paul Ehrlich and the early history of granulocytes. Microbiol. Spectr. 4, 10–1128 (2016).
Google Scholar
Drews, J. Paul Ehrlich: magister mundi. Nat. Rev. Drug Discov. 3, 797–801 (2004).
Google Scholar
Di Donato, R., Bonecchi, R. & Albano, F. Canonical and atypical chemokine receptors in the neutrophil life cycle. Cytokine 169, 156297 (2023).
Google Scholar
Metzemaekers, M., Gouwy, M. & Proost, P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell. Mol. Immunol. 17, 433–450 (2020).
Google Scholar
Petri, B. & Sanz, M.-J. Neutrophil chemotaxis. Cell Tissue Res. 371, 425–436 (2018).
Google Scholar
Eash, K. J., Means, J. M., White, D. W. & Link, D. C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113, 4711–4719 (2009).
Google Scholar
Subramanian, B. C., Majumdar, R. & Parent, C. A. The role of the LTB4-BLT1 axis in chemotactic gradient sensing and directed leukocyte migration. Semin. Immunol. 33, 16–29 (2017).
Google Scholar
Mehta, H. M. & Corey, S. J. G-CSF, the guardian of granulopoiesis. Semin. Immunol. 54, 101515 (2021).
Google Scholar
Welte, K. et al. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc. Natl. Acad. Sci. USA 82, 1526–1530 (1985).
Google Scholar
Hill, C. P., Osslund, T. D. & Eisenberg, D. The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proc. Natl. Acad. Sci. USA 90, 5167–5171 (1993).
Google Scholar
Nagata, S. et al. Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319, 415–418 (1986).
Google Scholar
Souza, L. M. et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 232, 61–65 (1986).
Google Scholar
Metcalf, D. The colony-stimulating factors and cancer. Cancer Immunol. Res. 1, 351–356 (2013).
Google Scholar
Gabrilove, J. L. et al. Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N. Engl. J. Med. 318, 1414–1422 (1988).
Google Scholar
Bronchud, M. H. et al. Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br. J. Cancer 56, 809–813 (1987).
Google Scholar
Özcan, A. & Boyman, O. Mechanisms regulating neutrophil responses in immunity, allergy, and autoimmunity. Allergy 77, 3567–3583 (2022).
Google Scholar
Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).
Google Scholar
Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).
Google Scholar
Ivetic, A. A head-to-tail view of L-selectin and its impact on neutrophil behaviour. Cell Tissue Res. 371, 437–453 (2018).
Google Scholar
Calderwood, D. A., Shattil, S. J. & Ginsberg, M. H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607–22610 (2000).
Google Scholar
Nourshargh, S., Renshaw, S. A. & Imhof, B. A. Reverse migration of neutrophils: where, when, how, and why? Trends Immunol. 37, 273–286 (2016).
Google Scholar
Maas, S. L., Soehnlein, O. & Viola, J. R. Organ-specific mechanisms of transendothelial neutrophil migration in the lung, liver, kidney, and aorta. Front. Immunol. 9, 2739 (2018).
Google Scholar
Margraf, A., Ley, K. & Zarbock, A. Neutrophil recruitment: from model systems to tissue-specific patterns. Trends Immunol. 40, 613–634 (2019).
Google Scholar
Hampton, M. B. & Dickerhof, N. Inside the phagosome: a bacterial perspective. Immunol. Rev. 314, 197–209 (2023).
Google Scholar
Cohn, Z. A. & Hirsch, J. G. The influence of phagocytosis on the intracellular distribution of granule-associated components of polymorphonuclear leucocytes. J. Exp. Med. 112, 1015–1022 (1960).
Google Scholar
Levin, R., Grinstein, S. & Canton, J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol. Rev. 273, 156–179 (2016).
Google Scholar
Naish, E. et al. The formation and function of the neutrophil phagosome. Immunol. Rev. 314, 158–180 (2023).
Google Scholar
Nordenfelt, P. & Tapper, H. Phagosome dynamics during phagocytosis by neutrophils. J. Leukoc. Biol. 90, 271–284 (2011).
Google Scholar
Krige, D. et al. CHR-2797: an antiproliferative aminopeptidase inhibitor that leads to amino acid deprivation in human leukemic cells. Cancer Res. 68, 6669–6679 (2008).
Google Scholar
Day, R. B. & Link, D. C. Regulation of neutrophil trafficking from the bone marrow. Cell. Mol. Life Sci. CMLS 69, 1415–1423 (2012).
Google Scholar
Tu, H. et al. Dying to defend: neutrophil death pathways and their implications in immunity. Adv. Sci. Weinh. Baden.-Wurtt. Ger. 11, e2306457 (2024).
Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).
Google Scholar
Cookson, B. T. & Brennan, M. A. Pro-inflammatory programmed cell death. Trends Microbiol. 9, 113–114 (2001).
Google Scholar
Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. cell 149, 1060–1072 (2012).
Google Scholar
Phillipson, M. & Kubes, P. The healing power of neutrophils. Trends Immunol. 40, 635–647 (2019).
Google Scholar
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).
Google Scholar
Filippi, M.-D. Neutrophil transendothelial migration: updates and new perspectives. Blood 133, 2149–2158 (2019).
Google Scholar
Mathias, J. R. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J. Leukoc. Biol. 80, 1281–1288 (2006).
Google Scholar
Zhao, Y., Rahmy, S., Liu, Z., Zhang, C. & Lu, X. Rational targeting of immunosuppressive neutrophils in cancer. Pharmacol. Ther. 212, 107556 (2020).
Google Scholar
Grecian, R., Whyte, M. K. B. & Walmsley, S. R. The role of neutrophils in cancer. Br. Med. Bull. 128, 5–14 (2018).
Google Scholar
Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’ TAN. Cancer Cell 16, 183–194 (2009).
Google Scholar
Andzinski, L. et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int. J. Cancer 138, 1982–1993 (2016).
Google Scholar
Zhou, J., Nefedova, Y., Lei, A. & Gabrilovich, D. Neutrophils and PMN-MDSC: their biological role and interaction with stromal cells. Semin. Immunol. 35, 19–28 (2018).
Google Scholar
Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol. 1, aaf8943 (2016).
Google Scholar
Sagiv, J. Y. et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 10, 562–573 (2015).
Google Scholar
Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).
Google Scholar
Kolaczkowska, E. Immunosuppressive lung neutrophils. Blood 140, 802–803 (2022).
Google Scholar
Volberding, P. J. et al. Suppressive neutrophils require PIM1 for metabolic fitness and survival during chronic viral infection. Cell Rep. 35, 109160 (2021).
Google Scholar
Huang, X. et al. Neutrophils in Cancer immunotherapy: friends or foes? Mol. Cancer 23, 107 (2024).
Google Scholar
Qi, X. et al. Identification and characterization of neutrophil heterogeneity in sepsis. Crit. Care Lond. Engl. 25, 50 (2021).
Google Scholar
Pillay, J. et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J. Clin. Invest. 122, 327–336 (2012).
Google Scholar
Demaret, J. et al. Marked alterations of neutrophil functions during sepsis-induced immunosuppression. J. Leukoc. Biol. 98, 1081–1090 (2015).
Google Scholar
Bae, G. H. et al. Unique characteristics of lung-resident neutrophils are maintained by PGE2/PKA/Tgm2-mediated signaling. Blood 140, 889–899 (2022).
Google Scholar
Bjerregaard, M. D., Jurlander, J., Klausen, P., Borregaard, N. & Cowland, J. B. The in vivo profile of transcription factors during neutrophil differentiation in human bone marrow. Blood 101, 4322–4332 (2003).
Google Scholar
Qu, J., Jin, J., Zhang, M. & Ng, L. G. Neutrophil diversity and plasticity: implications for organ transplantation. Cell. Mol. Immunol. 20, 993–1001 (2023).
Google Scholar
Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e8 (2018).
Google Scholar
Kwok, I. et al. Combinatorial single-cell analyses of granulocyte-monocyte progenitor heterogeneity reveals an early uni-potent neutrophil progenitor. Immunity 53, 303–318.e5 (2020).
Google Scholar
Calzetti, F. et al. CD66b-CD64dimCD115- cells in the human bone marrow represent neutrophil-committed progenitors. Nat. Immunol. 23, 679–691 (2022).
Google Scholar
Khoyratty, T. E. et al. Distinct transcription factor networks control neutrophil-driven inflammation. Nat. Immunol. 22, 1093–1106 (2021).
Google Scholar
Silvestre-Roig, C., Kalafati, L. & Chavakis, T. Neutrophils are shaped by the tumor microenvironment: novel possibilities for targeting neutrophils in cancer. Signal Transduct. Target. Ther. 9, 77 (2024).
Google Scholar
Kraus, R. F. & Gruber, M. A. Neutrophils-from bone marrow to first-line defense of the innate immune system. Front. Immunol. 12, 767175 (2021).
Google Scholar
Laurenti, E. & Göttgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418–426 (2018).
Google Scholar
Chavakis, T., Wielockx, B. & Hajishengallis, G. Inflammatory modulation of hematopoiesis: linking trained immunity and clonal hematopoiesis with chronic disorders. Annu. Rev. Physiol. 84, 183–207 (2022).
Google Scholar
Hidalgo, A., Chilvers, E. R., Summers, C. & Koenderman, L. The neutrophil life cycle. Trends Immunol. 40, 584–597 (2019).
Google Scholar
Borregaard, N. & Cowland, J. B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89, 3503–3521 (1997).
Google Scholar
Zhu, Y. P. et al. Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 24, 2329–2341.e8 (2018).
Google Scholar
Summers, C. et al. Neutrophil kinetics in health and disease. Trends Immunol. 31, 318–324 (2010).
Google Scholar
Rademakers, T. et al. Hematopoietic stem and progenitor cells use podosomes to transcellularly cross the bone marrow endothelium. Haematologica 105, 2746–2756 (2020).
Google Scholar
Burdon, P. C. E., Martin, C. & Rankin, S. M. Migration across the sinusoidal endothelium regulates neutrophil mobilization in response to ELR + CXC chemokines. Br. J. Haematol. 142, 100–108 (2008).
Google Scholar
Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).
Google Scholar
Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).
Google Scholar
Panopoulos, A. D. & Watowich, S. S. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and ‘emergency’ hematopoiesis. Cytokine 42, 277–288 (2008).
Google Scholar
Zhu, Q.-S. et al. G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth. Blood 107, 1847–1856 (2006).
Google Scholar
de Koning, J. P. et al. The membrane-distal cytoplasmic region of human granulocyte colony-stimulating factor receptor is required for STAT3 but not STAT1 homodimer formation. Blood 87, 1335–1342 (1996).
Google Scholar
Nicholson, S. E., Novak, U., Ziegler, S. F. & Layton, J. E. Distinct regions of the granulocyte colony-stimulating factor receptor are required for tyrosine phosphorylation of the signaling molecules JAK2, Stat3, and p42, p44MAPK. Blood 86, 3698–3704 (1995).
Google Scholar
McLemore, M. L. et al. STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity 14, 193–204 (2001).
Google Scholar
Kamezaki, K. et al. Roles of Stat3 and ERK in G-CSF signaling. Stem Cells Dayt. Ohio 23, 252–263 (2005).
Google Scholar
van Raam, B. J., Drewniak, A., Groenewold, V., van den Berg, T. K. & Kuijpers, T. W. Granulocyte colony-stimulating factor delays neutrophil apoptosis by inhibition of calpains upstream of caspase-3. Blood 112, 2046–2054 (2008).
Google Scholar
Raffaghello, L. et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells Dayt. Ohio 26, 151–162 (2008).
Google Scholar
Kim, H. K., De La Luz Sierra, M., Williams, C. K., Gulino, A. V. & Tosato, G. G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood 108, 812–820 (2006).
Google Scholar
Eash, K. J., Greenbaum, A. M., Gopalan, P. K. & Link, D. C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest. 120, 2423–2431 (2010).
Google Scholar
Osaka, M. et al. Critical role of the C5a-activated neutrophils in high-fat diet-induced vascular inflammation. Sci. Rep. 6, 21391 (2016).
Google Scholar
Patin, E. C., Thompson, A. & Orr, S. J. Pattern recognition receptors in fungal immunity. Semin. Cell Dev. Biol. 89, 24–33 (2019).
Google Scholar
Santoni, G. et al. Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J. Neuroinflammation 12, 21 (2015).
Google Scholar
Kunkel, E. J., Jung, U. & Ley, K. TNF-alpha induces selectin-mediated leukocyte rolling in mouse cremaster muscle arterioles. Am. J. Physiol. 272, H1391–1400 (1997).
Google Scholar
Zarbock, A., Ley, K., McEver, R. P. & Hidalgo, A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood 118, 6743–6751 (2011).
Google Scholar
Eriksson, E. E., Xie, X., Werr, J., Thoren, P. & Lindbom, L. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J. Exp. Med. 194, 205–218 (2001).
Google Scholar
Kunkel, E. J. & Ley, K. Distinct phenotype of E-selectin-deficient mice. E-selectin is required for slow leukocyte rolling in vivo. Circ. Res. 79, 1196–1204 (1996).
Google Scholar
Mayadas, T. N., Johnson, R. C., Rayburn, H., Hynes, R. O. & Wagner, D. D. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 74, 541–554 (1993).
Google Scholar
Kuwano, Y., Spelten, O., Zhang, H., Ley, K. & Zarbock, A. Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood 116, 617–624 (2010).
Google Scholar
Snapp, K. R., Heitzig, C. E. & Kansas, G. S. Attachment of the PSGL-1 cytoplasmic domain to the actin cytoskeleton is essential for leukocyte rolling on P-selectin. Blood 99, 4494–4502 (2002).
Google Scholar
Ramachandran, V., Williams, M., Yago, T., Schmidtke, D. W. & McEver, R. P. Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin. Proc. Natl. Acad. Sci. USA 101, 13519–13524 (2004).
Google Scholar
Khismatullin, D. B. & Truskey, G. A. Leukocyte rolling on P-selectin: a three-dimensional numerical study of the effect of cytoplasmic viscosity. Biophys. J. 102, 1757–1766 (2012).
Google Scholar
Sundd, P. et al. Slings’ enable neutrophil rolling at high shear. Nature 488, 399–403 (2012).
Google Scholar
Zhu, J. et al. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol. Cell 32, 849–861 (2008).
Google Scholar
Nishida, N. et al. Activation of leukocyte beta2 integrins by conversion from bent to extended conformations. Immunity 25, 583–594 (2006).
Google Scholar
Sun, Z., Costell, M. & Fässler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31 (2019).
Google Scholar
Moser, M. et al. Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelial cells. Nat. Med. 15, 300–305 (2009).
Google Scholar
Phillipson, M. et al. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med. 203, 2569–2575 (2006).
Google Scholar
McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).
Google Scholar
Margraf, A. et al. ArhGAP15, a RacGAP, acts as a temporal signaling regulator of Mac-1 affinity in sterile inflammation. J. Immunol. Baltim. Md 1950 205, 1365–1375 (2020).
Google Scholar
Yolland, L. et al. Persistent and polarized global actin flow is essential for directionality during cell migration. Nat. Cell Biol. 21, 1370–1381 (2019).
Google Scholar
Hepper, I. et al. The mammalian actin-binding protein 1 is critical for spreading and intraluminal crawling of neutrophils under flow conditions. J. Immunol. Baltim. Md 1950 188, 4590–4601 (2012).
Google Scholar
Phillipson, M. et al. Vav1 is essential for mechanotactic crawling and migration of neutrophils out of the inflamed microvasculature. J. Immunol. Baltim. Md 1950 182, 6870–6878 (2009).
Google Scholar
Barreiro, O. et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J. Cell Biol. 157, 1233–1245 (2002).
Google Scholar
Carman, C. V. & Springer, T. A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol. 167, 377–388 (2004).
Google Scholar
Petri, B. et al. Endothelial LSP1 is involved in endothelial dome formation, minimizing vascular permeability changes during neutrophil transmigration in vivo. Blood 117, 942–952 (2011).
Google Scholar
Kolaczkowska, E. et al. Neutrophil elastase activity compensates for a genetic lack of matrix metalloproteinase-9 (MMP-9) in leukocyte infiltration in a model of experimental peritonitis. J. Leukoc. Biol. 85, 374–381 (2009).
Google Scholar
Pieper, C., Pieloch, P. & Galla, H.-J. Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier. Brain Res. 1524, 1–11 (2013).
Google Scholar
Pellowe, A. S. et al. Endothelial cell-secreted MIF reduces pericyte contractility and enhances neutrophil extravasation. FASEB J. Publ. Fed. Am. Soc. Exp. Biol. 33, 2171–2186 (2019).
Google Scholar
Renkawitz, J. et al. Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature 568, 546–550 (2019).
Google Scholar
Lerchenberger, M. et al. Matrix metalloproteinases modulate ameboid-like migration of neutrophils through inflamed interstitial tissue. Blood 122, 770–780 (2013).
Google Scholar
Sadik, C. D. & Luster, A. D. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation. J. Leukoc. Biol. 91, 207–215 (2012).
Google Scholar
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).
Google Scholar
Van Haastert, P. J. M. & Devreotes, P. N. Chemotaxis: signalling the way forward. Nat. Rev. Mol. Cell Biol. 5, 626–634 (2004).
Google Scholar
Coates, T. D., Watts, R. G., Hartman, R. & Howard, T. H. Relationship of F-actin distribution to development of polar shape in human polymorphonuclear neutrophils. J. Cell Biol. 117, 765–774 (1992).
Google Scholar
Daly, C. A., Hall, E. T. & Ogden, S. K. Regulatory mechanisms of cytoneme-based morphogen transport. Cell. Mol. Life Sci. CMLS 79, 119 (2022).
Google Scholar
Devreotes, P. & Janetopoulos, C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448 (2003).
Google Scholar
Michael, M. & Vermeren, S. A neutrophil-centric view of chemotaxis. Essays Biochem 63, 607–618 (2019).
Google Scholar
Levi, S., Polyakov, M. V. & Egelhoff, T. T. Myosin II dynamics in Dictyostelium: determinants for filament assembly and translocation to the cell cortex during chemoattractant responses. Cell Motil. Cytoskeleton 53, 177–188 (2002).
Google Scholar
Flannagan, R. S., Jaumouillé, V. & Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol. 7, 61–98 (2012).
Google Scholar
Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).
Google Scholar
Mócsai, A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J. Exp. Med. 210, 1283–1299 (2013).
Google Scholar
Rørvig, S., Østergaard, O., Heegaard, N. H. H. & Borregaard, N. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors. J. Leukoc. Biol. 94, 711–721 (2013).
Google Scholar
Flannagan, R. S., Cosío, G. & Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7, 355–366 (2009).
Google Scholar
Dandekar, S. N. et al. Actin dynamics rapidly reset chemoattractant receptor sensitivity following adaptation in neutrophils. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20130008 (2013).
Google Scholar
Siraki, A. G. The many roles of myeloperoxidase: from inflammation and immunity to biomarkers, drug metabolism and drug discovery. Redox Biol. 46, 102109 (2021).
Google Scholar
Soehnlein, O., Steffens, S., Hidalgo, A. & Weber, C. Neutrophils as protagonists and targets in chronic inflammation. Nat. Rev. Immunol. 17, 248–261 (2017).
Google Scholar
Lawrence, S. M., Corriden, R. & Nizet, V. How neutrophils meet their end. Trends Immunol. 41, 531–544 (2020).
Google Scholar
Geering, B. & Simon, H.-U. Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ. 18, 1457–1469 (2011).
Google Scholar
Kobayashi, S. D., DeLeo, F. R. & Quinn, M. T. Microbes and the fate of neutrophils. Immunol. Rev. 314, 210–228 (2023).
Google Scholar
Tait, S. W. G. & Green, D. R. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 11, 621–632 (2010).
Google Scholar
Ranjan, K. & Pathak, C. Cellular dynamics of Fas-associated death domain in the regulation of cancer and inflammation. Int. J. Mol. Sci. 25, 3228 (2024).
Google Scholar
Voll, R. E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).
Google Scholar
Morioka, S., Maueröder, C. & Ravichandran, K. S. Living on the Edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50, 1149–1162 (2019).
Google Scholar
Bäck, M., Yurdagul, A., Tabas, I., Öörni, K. & Kovanen, P. T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389–406 (2019).
Google Scholar
Bagaitkar, J. et al. NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages. Blood 131, 2367–2378 (2018).
Google Scholar
Kobayashi, S. D. et al. Gene expression profiling provides insight into the pathophysiology of chronic granulomatous disease. J. Immunol. Baltim. Md 1950 172, 636–643 (2004).
Google Scholar
Wang, X., He, Z., Liu, H., Yousefi, S. & Simon, H.-U. Neutrophil necroptosis is triggered by ligation of adhesion molecules following GM-CSF priming. J. Immunol. Baltim. Md 1950 197, 4090–4100 (2016).
Google Scholar
Mihalache, C. C. et al. Inflammation-associated autophagy-related programmed necrotic death of human neutrophils characterized by organelle fusion events. J. Immunol. Baltim. Md 1950 186, 6532–6542 (2011).
Google Scholar
Wicki, S. et al. Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils. Cell Death Dis. 7, e2422 (2016).
Google Scholar
He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009).
Google Scholar
Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).
Google Scholar
Greenlee-Wacker, M. C. et al. Phagocytosis of Staphylococcus aureus by human neutrophils prevents macrophage efferocytosis and induces programmed necrosis. J. Immunol. Baltim. Md 1950 192, 4709–4717 (2014).
Google Scholar
van Zandbergen, G. et al. Chlamydia pneumoniae multiply in neutrophil granulocytes and delay their spontaneous apoptosis. J. Immunol. Baltim. Md 1950 172, 1768–1776 (2004).
Jondle, C. N., Gupta, K., Mishra, B. B. & Sharma, J. Klebsiella pneumoniae infection of murine neutrophils impairs their efferocytic clearance by modulating cell death machinery. PLoS Pathog. 14, e1007338 (2018).
Google Scholar
Thieblemont, N., Witko-Sarsat, V. & Ariel, A. Regulation of macrophage activation by proteins expressed on apoptotic neutrophils: Subversion towards autoimmunity by proteinase 3. Eur. J. Clin. Invest. 48, e12990 (2018).
Google Scholar
Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).
Google Scholar
Van Opdenbosch, N. & Lamkanfi, M. Caspases in cell death, inflammation, and disease. Immunity 50, 1352–1364 (2019).
Google Scholar
Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).
Google Scholar
Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).
Google Scholar
Sun, S., Shen, J., Jiang, J., Wang, F. & Min, J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct. Target. Ther. 8, 372 (2023).
Google Scholar
Veglia, F. et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78 (2019).
Google Scholar
Kim, R. et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022).
Google Scholar
Baz, A. A. et al. Neutrophil extracellular traps in bacterial infections and evasion strategies. Front. Immunol. 15, 1357967 (2024).
Google Scholar
Yipp, B. G. & Kubes, P. NETosis: how vital is it? Blood 122, 2784–2794 (2013).
Google Scholar
Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 (2010).
Google Scholar
Sollberger, G. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3, eaar6689 (2018).
Google Scholar
Leshner, M. et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front. Immunol. 3, 307 (2012).
Google Scholar
Jorch, S. K. & Kubes, P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23, 279–287 (2017).
Google Scholar
Eustache, J. H. et al. Casting a wide net on surgery: the central role of neutrophil extracellular traps. Ann. Surg. 272, 277–283 (2020).
Google Scholar
Schoen, J. et al. Neutrophils’ extracellular trap mechanisms: from physiology to pathology. Int. J. Mol. Sci. 23, 12855 (2022).
Google Scholar
Ronchetti, L. et al. Neutrophil extracellular traps in cancer: not only catching microbes. J. Exp. Clin. Cancer Res. 40, 231 (2021).
Google Scholar
James, P., Kaushal, D. & Beaumont Wilson, R. NETosis in surgery: pathophysiology, prevention, and treatment. Ann. Surg. 279, 765–780 (2024).
Google Scholar
Wong, S. L. et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat. Med. 21, 815–819 (2015).
Google Scholar
Liu, D. et al. NLRP3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound. Clin. Sci. Lond. Engl. 1979 133, 565–582 (2019).
Google Scholar
Yang, S. et al. Neutrophil extracellular traps delay diabetic wound healing by inducing endothelial-to-mesenchymal transition via the hippo pathway. Int. J. Biol. Sci. 19, 347–361 (2023).
Google Scholar
Souza, F. W. & Miao, E. A. Neutrophils only die twice. Sci. Adv. 9, eadm8715 (2023).
Google Scholar
Elks, P. M. et al. Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood 118, 712–722 (2011).
Google Scholar
Woodfin, A. et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat. Immunol. 12, 761–769 (2011).
Google Scholar
Hamza, B. et al. Retrotaxis of human neutrophils during mechanical confinement inside microfluidic channels. Integr. Biol. Quant. Biosci. Nano Macro 6, 175–183 (2014).
Google Scholar
Colom, B. et al. Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity 42, 1075–1086 (2015).
Google Scholar
Tharp, W. G. et al. Neutrophil chemorepulsion in defined interleukin-8 gradients in vitro and in vivo. J. Leukoc. Biol. 79, 539–554 (2006).
Google Scholar
Serhan, C. N., Chiang, N., Dalli, J. & Levy, B. D. Lipid mediators in the resolution of inflammation. Cold Spring Harb. Perspect. Biol. 7, a016311 (2014).
Google Scholar
Martin, C. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593 (2003).
Google Scholar
Casbon, A.-J. et al. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc. Natl. Acad. Sci. USA 112, E566–575 (2015).
Google Scholar
Fisher, D. T., Appenheimer, M. M. & Evans, S. S. The two faces of IL-6 in the tumor microenvironment. Semin. Immunol. 26, 38–47 (2014).
Google Scholar
Horvath, L. et al. Beyond binary: bridging neutrophil diversity to new therapeutic approaches in NSCLC. Trends Cancer 10, 457–474 (2024).
Google Scholar
Sun, B. et al. Neutrophil suppresses tumor cell proliferation via Fas /Fas ligand pathway mediated cell cycle arrested. Int. J. Biol. Sci. 14, 2103–2113 (2018).
Google Scholar
Gershkovitz, M. et al. TRPM2 mediates neutrophil killing of disseminated tumor cells. Cancer Res. 78, 2680–2690 (2018).
Google Scholar
Sun, H. et al. Formyl peptide enhances cancer immunotherapy by activating antitumoral neutrophils, and T cells. Biomed. Pharmacother. Biomed. Pharmacother. 175, 116670 (2024).
Google Scholar
Korbecki, J. et al. The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors-a review of literature. Int. J. Mol. Sci. 22, 843 (2021).
Google Scholar
Li, S. et al. Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells. J. Exp. Clin. Cancer Res. CR 38, 6 (2019).
Google Scholar
Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 5, 28 (2020).
Google Scholar
Cheng, Y. et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis. 9, 422 (2018).
Google Scholar
Kwantwi, L. B. et al. Tumor-associated neutrophils activated by tumor-derived CCL20 (C-C motif chemokine ligand 20) promote T cell immunosuppression via programmed death-ligand 1 (PD-L1) in breast cancer. Bioengineered 12, 6996–7006 (2021).
Google Scholar
Wang, T.-T. et al. Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut 66, 1900–1911 (2017).
Google Scholar
Salmaninejad, A. et al. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J. Cell. Physiol. 234, 16824–16837 (2019).
Google Scholar
Filippone, A. et al. PD1/PD-L1 immune checkpoint as a potential target for preventing brain tumor progression. Cancer Immunol. Immunother. CII 71, 2067–2075 (2022).
Google Scholar
Ring, N. G. et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc. Natl. Acad. Sci. USA 114, E10578–E10585 (2017).
Google Scholar
Yu, X. et al. Neutrophils in cancer: dual roles through intercellular interactions. Oncogene 43, 1163–1177 (2024).
Google Scholar
Yang, S. et al. Targeting neutrophils: mechanism and advances in cancer therapy. Clin. Transl. Med. 14, e1599 (2024).
Google Scholar
Cedervall, J., Zhang, Y. & Olsson, A.-K. Tumor-induced NETosis as a risk factor for metastasis and organ failure. Cancer Res. 76, 4311–4315 (2016).
Google Scholar
Tohme, S. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 76, 1367–1380 (2016).
Google Scholar
Yang, L. et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583, 133–138 (2020).
Google Scholar
Okamoto, M. et al. Neutrophil extracellular traps promote metastases of colorectal cancers through activation of ERK signaling by releasing neutrophil elastase. Int. J. Mol. Sci. 24, 1118 (2023).
Google Scholar
Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).
Google Scholar
Wang, Y., Du, C., Zhang, Y. & Zhu, L. Composition and function of neutrophil extracellular traps. Biomolecules 14, 416 (2024).
Google Scholar
Teijeira, Á. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52, 856–871.e8 (2020).
Google Scholar
Zhang, H. et al. Neutrophils extracellular traps inhibition improves PD-1 blockade immunotherapy in colorectal cancer. Cancers 13, 5333 (2021).
Google Scholar
Salcher, S. et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 40, 1503–1520.e8 (2022).
Google Scholar
Wigerblad, G. et al. Single-cell analysis reveals the range of transcriptional states of circulating human neutrophils. J. Immunol. Baltim. Md 1950 209, 772–782 (2022).
Google Scholar
Montaldo, E. et al. Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress. Nat. Immunol. 23, 1470–1483 (2022).
Google Scholar
Dinh, H. Q. et al. Coexpression of CD71 and CD117 identifies an early unipotent neutrophil progenitor population in human bone marrow. Immunity 53, 319–334.e6 (2020).
Google Scholar
Xue, R. et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141–147 (2022).
Google Scholar
Wang, L. et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut 72, 958–971 (2023).
Google Scholar
Wu, F. et al. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 12, 2540 (2021).
Google Scholar
Wu, Y. et al. Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell (2024).
Google Scholar
Mysore, V. et al. FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nat. Commun. 12, 4791 (2021).
Google Scholar
Ma, R. et al. Single-cell RNA sequencing reveals immune cell dysfunction in the peripheral blood of patients with highly aggressive gastric cancer. Cell Prolif. 57, e13591 (2024).
Google Scholar
Atanasova, M. & Whitty, A. Understanding cytokine and growth factor receptor activation mechanisms. Crit. Rev. Biochem. Mol. Biol. 47, 502–530 (2012).
Google Scholar
Fan, G. H., Yang, W., Wang, X. J., Qian, Q. & Richmond, A. Identification of a motif in the carboxyl terminus of CXCR2 that is involved in adaptin 2 binding and receptor internalization. Biochemistry 40, 791–800 (2001).
Google Scholar
Villaseca, S. et al. Gαi protein subunit: a step toward understanding its non-canonical mechanisms. Front. Cell Dev. Biol. 10, 941870 (2022).
Google Scholar
Lehmann, D. M., Seneviratne, A. M. P. B. & Smrcka, A. V. Small molecule disruption of G protein beta gamma subunit signaling inhibits neutrophil chemotaxis and inflammation. Mol. Pharmacol. 73, 410–418 (2008).
Google Scholar
Winer, B. Y. et al. Plasma membrane abundance dictates phagocytic capacity and functional cross-talk in myeloid cells. Sci. Immunol. 9, eadl2388 (2024).
Google Scholar
Lundgren, S. M. et al. Signaling dynamics distinguish high- and low-priority neutrophil chemoattractant receptors. Sci. Signal. 16, eadd1845 (2023).
Google Scholar
Migeotte, I., Communi, D. & Parmentier, M. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 17, 501–519 (2006).
Google Scholar
Boulay, F., Naik, N., Giannini, E., Tardif, M. & Brouchon, L. Phagocyte chemoattractant receptors. Ann. N. Y. Acad. Sci. 832, 69–84 (1997).
Google Scholar
Lee, H., Whitfeld, P. L. & Mackay, C. R. Receptors for complement C5a. The importance of C5aR and the enigmatic role of C5L2. Immunol. Cell Biol. 86, 153–160 (2008).
Google Scholar
Nakamura, M. & Shimizu, T. Leukotriene receptors. Chem. Rev. 111, 6231–6298 (2011).
Google Scholar
Yokomizo, T., Nakamura, M. & Shimizu, T. Leukotriene receptors as potential therapeutic targets. J. Clin. Invest. 128, 2691–2701 (2018).
Google Scholar
Ohnishi, H., Miyahara, N. & Gelfand, E. W. The role of leukotriene B(4) in allergic diseases. Allergol. Int. J. Jpn. Soc. Allergol. 57, 291–298 (2008).
Google Scholar
Lämmermann, T. et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498, 371–375 (2013).
Google Scholar
Allendorf, D. J. et al. C5a-mediated leukotriene B4-amplified neutrophil chemotaxis is essential in tumor immunotherapy facilitated by anti-tumor monoclonal antibody and beta-glucan. J. Immunol. Baltim. Md 1950 174, 7050–7056 (2005).
Google Scholar
Yokomizo, T. & Shimizu, T. The leukotriene B4 receptors BLT1 and BLT2 as potential therapeutic targets. Immunol. Rev. 317, 30–41 (2023).
Google Scholar
Wang, N. et al. Structural basis of leukotriene B4 receptor 1 activation. Nat. Commun. 13, 1156 (2022).
Google Scholar
Brink, C. et al. International Union of Pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors. Pharmacol. Rev. 55, 195–227 (2003).
Google Scholar
Woo, C.-H. et al. Transepithelial migration of neutrophils in response to leukotriene B4 is mediated by a reactive oxygen species-extracellular signal-regulated kinase-linked cascade. J. Immunol. Baltim. Md 1950 170, 6273–6279 (2003).
Google Scholar
Tarlowe, M. H. et al. Inflammatory chemoreceptor cross-talk suppresses leukotriene B4 receptor 1-mediated neutrophil calcium mobilization and chemotaxis after trauma. J. Immunol. Baltim. Md 1950 171, 2066–2073 (2003).
Google Scholar
Nishio, M. et al. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat. Cell Biol. 9, 36–44 (2007).
Google Scholar
Mondal, S., Subramanian, K. K., Sakai, J., Bajrami, B. & Luo, H. R. Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion. Mol. Biol. Cell 23, 1219–1230 (2012).
Google Scholar
Ito, N. et al. Requirement of phosphatidylinositol 3-kinase activation and calcium influx for leukotriene B4-induced enzyme release. J. Biol. Chem. 277, 44898–44904 (2002).
Google Scholar
Ferguson, G. J. et al. PI(3)Kgamma has an important context-dependent role in neutrophil chemokinesis. Nat. Cell Biol. 9, 86–91 (2007).
Google Scholar
Devreotes, P. & Horwitz, A. R. Signaling networks that regulate cell migration. Cold Spring Harb. Perspect. Biol. 7, a005959 (2015).
Google Scholar
Chen, J., Tang, H., Hay, N., Xu, J. & Ye, R. D. Akt isoforms differentially regulate neutrophil functions. Blood 115, 4237–4246 (2010).
Google Scholar
Sánchez-Galán, E. et al. Leukotriene B4 enhances the activity of nuclear factor-kappaB pathway through BLT1 and BLT2 receptors in atherosclerosis. Cardiovasc. Res. 81, 216–225 (2009).
Google Scholar
Ichiki, T., Koga, T. & Yokomizo, T. Receptor for advanced glycation end products regulates leukotriene B4 receptor 1 signaling. DNA Cell Biol. 35, 747–750 (2016).
Google Scholar
Ichiki, T. et al. Modulation of leukotriene B4 receptor 1 signaling by receptor for advanced glycation end products (RAGE). FASEB J. Publ. Fed. Am. Soc. Exp. Biol. 30, 1811–1822 (2016).
Google Scholar
He, R., Chen, Y. & Cai, Q. The role of the LTB4-BLT1 axis in health and disease. Pharmacol. Res. 158, 104857 (2020).
Google Scholar
Laumonnier, Y., Karsten, C. M. & Köhl, J. Novel insights into the expression pattern of anaphylatoxin receptors in mice and men. Mol. Immunol. 89, 44–58 (2017).
Google Scholar
Vandendriessche, S., Cambier, S., Proost, P. & Marques, P. E. Complement receptors and their role in leukocyte recruitment and phagocytosis. Front. Cell Dev. Biol. 9, 624025 (2021).
Google Scholar
Santos-López, J., de la Paz, K., Fernández, F. J. & Vega, M. C. Structural biology of complement receptors. Front. Immunol. 14, 1239146 (2023).
Google Scholar
Haviland, D. L. et al. Cellular expression of the C5a anaphylatoxin receptor (C5aR): demonstration of C5aR on nonmyeloid cells of the liver and lung. J. Immunol. Baltim. Md 1950 154, 1861–1869 (1995).
Google Scholar
Schieferdecker, H. L., Schlaf, G., Jungermann, K. & Götze, O. Functions of anaphylatoxin C5a in rat liver: direct and indirect actions on nonparenchymal and parenchymal cells. Int. Immunopharmacol. 1, 469–481 (2001).
Google Scholar
Li, R., Coulthard, L. G., Wu, M. C. L., Taylor, S. M. & Woodruff, T. M. C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J. Publ. Fed. Am. Soc. Exp. Biol. 27, 855–864 (2013).
Google Scholar
Okinaga, S. et al. C5L2, a nonsignaling C5A binding protein. Biochemistry 42, 9406–9415 (2003).
Google Scholar
Sun, L. & Ye, R. D. Role of G protein-coupled receptors in inflammation. Acta Pharmacol. Sin. 33, 342–350 (2012).
Google Scholar
Wingler, L. M. & Lefkowitz, R. J. Conformational basis of G protein-coupled receptor signaling versatility. Trends Cell Biol. 30, 736–747 (2020).
Google Scholar
Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part I – molecular mechanisms of activation and regulation. Front. Immunol. 6, 262 (2015).
Google Scholar
Buhl, A. M., Avdi, N., Worthen, G. S. & Johnson, G. L. Mapping of the C5a receptor signal transduction network in human neutrophils. Proc. Natl. Acad. Sci. USA 91, 9190–9194 (1994).
Google Scholar
Perianayagam, M. C., Balakrishnan, V. S., King, A. J., Pereira, B. J. G. & Jaber, B. L. C5a delays apoptosis of human neutrophils by a phosphatidylinositol 3-kinase-signaling pathway. Kidney Int. 61, 456–463 (2002).
Google Scholar
Kastl, S. P. et al. The complement component C5a induces the expression of plasminogen activator inhibitor-1 in human macrophages via NF-kappaB activation. J. Thromb. Haemost. JTH 4, 1790–1797 (2006).
Google Scholar
Torres, M. & Forman, H. J. Activation of several MAP kinases upon stimulation of rat alveolar macrophages: role of the NADPH oxidase. Arch. Biochem. Biophys. 366, 231–239 (1999).
Google Scholar
Lo, R. K. H., Cheung, H. & Wong, Y. H. Constitutively active Galpha16 stimulates STAT3 via a c-Src/JAK- and ERK-dependent mechanism. J. Biol. Chem. 278, 52154–52165 (2003).
Google Scholar
Ye, R. D. Regulation of nuclear factor kappaB activation by G-protein-coupled receptors. J. Leukoc. Biol. 70, 839–848 (2001).
Google Scholar
Hajishengallis, G. & Lambris, J. D. More than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol. Rev. 274, 233–244 (2016).
Google Scholar
Bosmann, M. et al. Complement activation product C5a is a selective suppressor of TLR4-induced, but not TLR3-induced, production of IL-27(p28) from macrophages. J. Immunol. Baltim. Md 1950 188, 5086–5093 (2012).
Google Scholar
Hawlisch, H. et al. C5a negatively regulates toll-like receptor 4-induced immune responses. Immunity 22, 415–426 (2005).
Google Scholar
Guo, Q. et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct. Target. Ther. 9, 53 (2024).
Google Scholar
Arumugam, T. V. et al. Protective effect of a human C5a receptor antagonist against hepatic ischaemia-reperfusion injury in rats. J. Hepatol. 40, 934–941 (2004).
Google Scholar
Schreiber, A. et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. JASN 20, 289–298 (2009).
Google Scholar
Baelder, R. et al. Pharmacological targeting of anaphylatoxin receptors during the effector phase of allergic asthma suppresses airway hyperresponsiveness and airway inflammation. J. Immunol. Baltim. Md 1950 174, 783–789 (2005).
Google Scholar
Zlotnik, A., Yoshie, O. & Nomiyama, H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 7, 243 (2006).
Google Scholar
Capucetti, A., Albano, F. & Bonecchi, R. Multiple roles for chemokines in neutrophil biology. Front. Immunol. 11, 1259 (2020).
Google Scholar
Bachelerie, F. et al. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharm. Rev. 66, 71P–79 (2013).
Russo, R. C., Garcia, C. C., Teixeira, M. M. & Amaral, F. A. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev. Clin. Immunol. 10, 593–619 (2014).
Google Scholar
Samanta, A. K., Oppenheim, J. J. & Matsushima, K. Identification and characterization of specific receptors for monocyte-derived neutrophil chemotactic factor (MDNCF) on human neutrophils. J. Exp. Med. 169, 1185–1189 (1989).
Google Scholar
Granot, Z. et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20, 300–314 (2011).
Google Scholar
de Oliveira, T. H. C. et al. Intravital microscopic evaluation of the effects of a CXCR2 antagonist in a model of liver ischemia reperfusion injury in mice. Front. Immunol. 8, 1917 (2017).
Google Scholar
Nagarkar, D. R. et al. CXCR2 is required for neutrophilic airway inflammation and hyperresponsiveness in a mouse model of human rhinovirus infection. J. Immunol. Baltim. Md 1950 183, 6698–6707 (2009).
Google Scholar
Devalaraja, R. M. et al. Delayed wound healing in CXCR2 knockout mice. J. Invest. Dermatol. 115, 234–244 (2000).
Google Scholar
Bonnett, C. R., Cornish, E. J., Harmsen, A. G. & Burritt, J. B. Early neutrophil recruitment and aggregation in the murine lung inhibit germination of Aspergillus fumigatus Conidia. Infect. Immun. 74, 6528–6539 (2006).
Google Scholar
Domínguez-Luis, M. J. et al. L-selectin expression is regulated by CXCL8-induced reactive oxygen species produced during human neutrophil rolling. Eur. J. Immunol. 49, 386–397 (2019).
Google Scholar
Xu, R. et al. Low expression of CXCR1/2 on neutrophils predicts poor survival in patients with hepatitis B virus-related acute-on-chronic liver failure. Sci. Rep. 6, 38714 (2016).
Google Scholar
Hsieh, S.-C. et al. Abnormal in vitro CXCR2 modulation and defective cationic ion transporter expression on polymorphonuclear neutrophils responsible for hyporesponsiveness to IL-8 stimulation in patients with active systemic lupus erythematosus. Rheumatol. Oxf. Engl. 47, 150–157 (2008).
Google Scholar
Bruserud, Ø., Mosevoll, K. A., Bruserud, Ø., Reikvam, H. & Wendelbo, Ø. The regulation of neutrophil migration in patients with sepsis: the complexity of the molecular mechanisms and their modulation in sepsis and the heterogeneity of sepsis patients. Cells 12, 1003 (2023).
Google Scholar
Qiao, H. et al. CXCR2 Expression on neutrophils is upregulated during the relapsing phase of ocular Behcet disease. Curr. Eye Res. 30, 195–203 (2005).
Google Scholar
Kamohara, H., Takahashi, M., Ishiko, T., Ogawa, M. & Baba, H. Induction of interleukin-8 (CXCL-8) by tumor necrosis factor-alpha and leukemia inhibitory factor in pancreatic carcinoma cells: Impact of CXCL-8 as an autocrine growth factor. Int. J. Oncol. 31, 627–632 (2007).
Google Scholar
Cheng, Y., Ma, X.-L., Wei, Y.-Q. & Wei, X.-W. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim. Biophys. Acta Rev. Cancer 1871, 289–312 (2019).
Google Scholar
Montaño-Rendón, F., Grinstein, S. & Walpole, G. F. W. Monitoring phosphoinositide fluxes and effectors during leukocyte chemotaxis and phagocytosis. Front. Cell Dev. Biol. 9, 626136 (2021).
Google Scholar
Cheng, G. Z. et al. Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr. Cancer Drug Targets 8, 2–6 (2008).
Google Scholar
Ha, H., Debnath, B. & Neamati, N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 7, 1543–1588 (2017).
Google Scholar
Jamieson, T. et al. Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J. Clin. Invest. 122, 3127–3144 (2012).
Google Scholar
Cataisson, C. et al. Inducible cutaneous inflammation reveals a protumorigenic role for keratinocyte CXCR2 in skin carcinogenesis. Cancer Res. 69, 319–328 (2009).
Google Scholar
Mestas, J. et al. The role of CXCR2/CXCR2 ligand biological axis in renal cell carcinoma. J. Immunol. Baltim. Md 1950 175, 5351–5357 (2005).
Google Scholar
Schiffmann, E., Corcoran, B. A. & Wahl, S. M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc. Natl. Acad. Sci. USA 72, 1059–1062 (1975).
Google Scholar
Hayashi, F., Means, T. K. & Luster, A. D. Toll-like receptors stimulate human neutrophil function. Blood 102, 2660–2669 (2003).
Google Scholar
Dorward, D. A. et al. The role of formylated peptides and formyl peptide receptor 1 in governing neutrophil function during acute inflammation. Am. J. Pathol. 185, 1172–1184 (2015).
Google Scholar
Dai, Y., Major, J., Novotny, M. & Hamilton, T. A. IL-4 inhibits expression of the formyl peptide receptor gene in mouse peritoneal macrophages. J. Interferon Cytokine Res. J. Int. Soc. Interferon Cytokine Res. 25, 11–19 (2005).
Google Scholar
Dahlgren, C., Gabl, M., Holdfeldt, A., Winther, M. & Forsman, H. Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem. Pharmacol. 114, 22–39 (2016).
Google Scholar
Loor, F., Tiberghien, F., Wenandy, T., Didier, A. & Traber, R. Cyclosporins: structure-activity relationships for the inhibition of the human FPR1 formylpeptide receptor. J. Med. Chem. 45, 4613–4628 (2002).
Google Scholar
Li, S.-Q. et al. The expression of formyl peptide receptor 1 is correlated with tumor invasion of human colorectal cancer. Sci. Rep. 7, 5918 (2017).
Google Scholar
Anton, P. A., Targan, S. R. & Shanahan, F. Increased neutrophil receptors for and response to the proinflammatory bacterial peptide formyl-methionyl-leucyl-phenylalanine in Crohn’s disease. Gastroenterology 97, 20–28 (1989).
Google Scholar
Stockley, R. A., Grant, R. A., Llewellyn-Jones, C. G., Hill, S. L. & Burnett, D. Neutrophil formyl-peptide receptors. Relationship to peptide-induced responses and emphysema. Am. J. Respir. Crit. Care Med. 149, 464–468 (1994).
Google Scholar
Cowland, J. B. & Borregaard, N. The individual regulation of granule protein mRNA levels during neutrophil maturation explains the heterogeneity of neutrophil granules. J. Leukoc. Biol. 66, 989–995 (1999).
Google Scholar
Sengeløv, H., Boulay, F., Kjeldsen, L. & Borregaard, N. Subcellular localization and translocation of the receptor for N-formylmethionyl-leucyl-phenylalanine in human neutrophils. Biochem. J. 299, 473–479 (1994).
Google Scholar
Chen, Y.-H., Wu, K.-H. & Wu, H.-P. Unraveling the complexities of toll-like receptors: from molecular mechanisms to clinical applications. Int. J. Mol. Sci. 25, 5037 (2024).
Google Scholar
Zindel, J. & Kubes, P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu. Rev. Pathol. 15, 493–518 (2020).
Google Scholar
Richard, K. et al. Dissociation of TRIF bias and adjuvanticity. Vaccine 38, 4298–4308 (2020).
Google Scholar
Yu, R., Zhu, B. & Chen, D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell. Mol. Life Sci. CMLS 79, 191 (2022).
Google Scholar
Andzinski, L. et al. Delayed apoptosis of tumor associated neutrophils in the absence of endogenous IFN-β. Int. J. Cancer 136, 572–583 (2015).
Google Scholar
Jablonska, J., Wu, C.-F., Andzinski, L., Leschner, S. & Weiss, S. CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β. Int. J. Cancer 134, 1346–1358 (2014).
Google Scholar
Park, B. S. et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191–1195 (2009).
Google Scholar
Rajpoot, S. et al. TIRAP in the mechanism of inflammation. Front. Immunol. 12, 697588 (2021).
Google Scholar
Ciesielska, A., Matyjek, M. & Kwiatkowska, K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell. Mol. Life Sci. CMLS 78, 1233–1261 (2021).
Google Scholar
Xu, G. et al. Virus-inducible IGFALS facilitates innate immune responses by mediating IRAK1 and TRAF6 activation. Cell. Mol. Immunol. 18, 1587–1589 (2021).
Google Scholar
Strickson, S. et al. Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Proc. Natl. Acad. Sci. USA 114, E3481–E3489 (2017).
Google Scholar
Ajibade, A. A., Wang, H. Y. & Wang, R.-F. Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol. 34, 307–316 (2013).
Google Scholar
Fukao, T. & Koyasu, S. PI3K and negative regulation of TLR signaling. Trends Immunol. 24, 358–363 (2003).
Google Scholar
Ha, T. et al. Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovasc. Res. 78, 546–553 (2008).
Google Scholar
Kim, G. O., Kim, N., Song, G. Y. & Bae, J.-S. Inhibitory activities of rare ginsenoside Rg4 on cecal ligation and puncture-induced sepsis. Int. J. Mol. Sci. 23, 10836 (2022).
Google Scholar
Yan, C. et al. Zhongfeng Capsules protects against cerebral ischemia-reperfusion injury via mediating the phosphoinositide 3-kinase/Akt and toll-like receptor 4/nuclear factor kappa B signaling pathways by regulating neuronal apoptosis and inflammation. Apoptosis Int. J. Program. Cell Death 27, 561–576 (2022).
Google Scholar
Rosales, C. Neutrophils at the crossroads of innate and adaptive immunity. J. Leukoc. Biol. 108, 377–396 (2020).
Google Scholar
Alemán, O. R. & Rosales, C. Human neutrophil Fc gamma receptors: different buttons for different responses. J. Leukoc. Biol. 114, 571–584 (2023).
Google Scholar
Chen, K. et al. Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo. Blood 120, 4421–4431 (2012).
Google Scholar
Alemán, O. R., Mora, N., Cortes-Vieyra, R., Uribe-Querol, E. & Rosales, C. Transforming growth factor-β-Activated kinase 1 is required for human FcγRIIIb-induced neutrophil extracellular trap formation. Front. Immunol. 7, 277 (2016).
Google Scholar
Behnen, M. et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. J. Immunol. Baltim. Md 1950 193, 1954–1965 (2014).
Google Scholar
Alemán, O. R., Mora, N., Cortes-Vieyra, R., Uribe-Querol, E. & Rosales, C. Differential use of human neutrophil Fcγ receptors for inducing neutrophil extracellular trap formation. J. Immunol. Res. 2016, 2908034 (2016).
Google Scholar
Alemán, O. R., Mora, N. & Rosales, C. The antibody receptor Fc gamma receptor IIIb induces calcium entry via transient receptor potential melastatin 2 in human neutrophils. Front. Immunol. 12, 657393 (2021).
Google Scholar
Golay, J. et al. Human neutrophils express low levels of FcγRIIIA, which plays a role in PMN activation. Blood 133, 1395–1405 (2019).
Google Scholar
Treffers, L. W. et al. FcγRIIIb restricts antibody-dependent destruction of cancer cells by human neutrophils. Front. Immunol. 9, 3124 (2018).
Google Scholar
Bournazos, S. & Ravetch, J. V. Fcγ receptor pathways during active and passive immunization. Immunol. Rev. 268, 88–103 (2015).
Google Scholar
Wang, Y. & Jönsson, F. Expression, role, and regulation of neutrophil fcγ receptors. Front. Immunol. 10, 1958 (2019).
Google Scholar
Vogt, K. L., Summers, C., Chilvers, E. R. & Condliffe, A. M. Priming and de-priming of neutrophil responses in vitro and in vivo. Eur. J. Clin. Invest. 48, e12967 (2018).
Google Scholar
Khor, C. C. et al. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat. Genet. 43, 1241–1246 (2011).
Google Scholar
Shrestha, S. et al. Role of activating FcγR gene polymorphisms in Kawasaki disease susceptibility and intravenous immunoglobulin response. Circ. Cardiovasc. Genet. 5, 309–316 (2012).
Google Scholar
Nagelkerke, S. Q. et al. Extensive ethnic variation and linkage disequilibrium at the FCGR2/3 locus: different genetic associations revealed in Kawasaki disease. Front. Immunol. 10, 185 (2019).
Google Scholar
Perdomo, J. et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat. Commun. 10, 1322 (2019).
Google Scholar
Zhang, Q., Li, W., Mao, X. & Miao, S. Platelet FcγRIIA: an emerging regulator and biomarker in cardiovascular disease and cancer. Thromb. Res. 238, 19–26 (2024).
Google Scholar
Treffers, L. W. et al. Genetic variation of human neutrophil Fcγ receptors and SIRPα in antibody-dependent cellular cytotoxicity towards cancer cells. Eur. J. Immunol. 48, 344–354 (2018).
Google Scholar
Musolino, A. et al. Role of Fcγ receptors in HER2-targeted breast cancer therapy. J. Immunother. Cancer 10, e003171 (2022).
Google Scholar
Caratelli, S. et al. In vitro elimination of epidermal growth factor receptor-overexpressing cancer cells by CD32A-chimeric receptor T cells in combination with cetuximab or panitumumab. Int. J. Cancer 146, 236–247 (2020).
Google Scholar
Zeng, Q. et al. Recent advances in hematopoietic cell kinase in cancer progression: Mechanisms and inhibitors. Biomed. Pharmacother. Biomed. Pharmacother. 176, 116932 (2024).
Google Scholar
Peterson, C. & Chandler, H. L. Insulin facilitates corneal wound healing in the diabetic environment through the RTK-PI3K/Akt/mTOR axis in vitro. Mol. Cell. Endocrinol. 548, 111611 (2022).
Google Scholar
Hunter, T. Discovering the first tyrosine kinase. Proc. Natl. Acad. Sci. USA 112, 7877–7882 (2015).
Google Scholar
Stakenborg, M. et al. Neutrophilic HGF-MET signalling exacerbates intestinal inflammation. J. Crohns Colitis 14, 1748–1758 (2020).
Google Scholar
Felix, F. B. et al. Blocking the HGF-MET pathway induces resolution of neutrophilic inflammation by promoting neutrophil apoptosis and efferocytosis. Pharmacol. Res. 188, 106640 (2023).
Google Scholar
Lombardi, A. M., Sangiolo, D. & Vigna, E. MET oncogene targeting for cancer immunotherapy. Int. J. Mol. Sci. 25, 6109 (2024).
Google Scholar
Finisguerra, V. et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature 522, 349–353 (2015).
Google Scholar
Glodde, N. et al. Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity 47, 789–802.e9 (2017).
Google Scholar
Futosi, K. et al. Dasatinib inhibits proinflammatory functions of mature human neutrophils. Blood 119, 4981–4991 (2012).
Google Scholar
Wu, Y., Hannigan, M., Zhan, L., Madri, J. A. & Huang, C.-K.- NOD mice having a lyn tyrosine kinase mutation exhibit abnormal neutrophil chemotaxis. J. Cell. Physiol. 232, 1689–1695 (2017).
Google Scholar
Mazzi, P., Caveggion, E., Lapinet-Vera, J. A., Lowell, C. A. & Berton, G. The Src-family kinases Hck and Fgr regulate early lipopolysaccharide-induced myeloid cell recruitment into the lung and their ability to secrete chemokines. J. Immunol. Baltim. Md 1950 195, 2383–2395 (2015).
Google Scholar
Lőrincz, Á. M. et al. Different calcium and Src family kinase signaling in Mac-1 dependent phagocytosis and extracellular vesicle generation. Front. Immunol. 10, 2942 (2019).
Google Scholar
Futosi, K. et al. Myeloid Src-family kinases are critical for neutrophil-mediated autoinflammation in gout and motheaten models. J. Exp. Med. 220, e20221010 (2023).
Google Scholar
Liao, H.-R., Kao, Y.-Y., Leu, Y.-L., Liu, F.-C. & Tseng, C.-P. Larixol inhibits fMLP-induced superoxide anion production and chemotaxis by targeting the βγ subunit of Gi-protein of fMLP receptor in human neutrophils. Biochem. Pharmacol. 201, 115091 (2022).
Google Scholar
Cheung, R. et al. An arrestin-dependent multi-kinase signaling complex mediates MIP-1beta/CCL4 signaling and chemotaxis of primary human macrophages. J. Leukoc. Biol. 86, 833–845 (2009).
Google Scholar
Lowell, C. A. Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk. Cold Spring Harb. Perspect. Biol. 3, a002352 (2011).
Google Scholar
Jakus, Z., Németh, T., Verbeek, J. S. & Mócsai, A. Critical but overlapping role of FcgammaRIII and FcgammaRIV in activation of murine neutrophils by immobilized immune complexes. J. Immunol. Baltim. Md 1950 180, 618–629 (2008).
Google Scholar
Negoro, P. E. et al. Spleen tyrosine kinase is a critical regulator of neutrophil responses to candida species. mBio. 11, e02043–19 (2020).
Google Scholar
Nguyen, G. T. et al. SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst. eLife 9, e56656 (2020).
Google Scholar
Zhou, Q. et al. Syk-dependent homologous recombination activation promotes cancer resistance to DNA targeted therapy. Drug Resist. Updat. Rev. Comment. Antimicrob. Anticancer Chemother. 74, 101085 (2024).
Google Scholar
Tanimura, S. & Takeda, K. ERK signalling as a regulator of cell motility. J. Biochem. (Tokyo) 162, 145–154 (2017).
Google Scholar
Wang, D. et al. The configuration of GRB2 in protein interaction and signal transduction. Biomolecules 14, 259 (2024).
Google Scholar
Bahar, M. E., Kim, H. J. & Kim, D. R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct. Target. Ther. 8, 455 (2023).
Google Scholar
Rickert, P., Weiner, O. D., Wang, F., Bourne, H. R. & Servant, G. Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol. 10, 466–473 (2000).
Google Scholar
Hirsch, E. et al. Signaling through PI3Kgamma: a common platform for leukocyte, platelet and cardiovascular stress sensing. Thromb. Haemost. 95, 29–35 (2006).
Google Scholar
Sánchez-Madrid, F. & del Pozo, M. A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).
Google Scholar
Cotton, M. & Claing, A. G protein-coupled receptors stimulation and the control of cell migration. Cell. Signal. 21, 1045–1053 (2009).
Google Scholar
Rathinaswamy, M. K. et al. HDX-MS-optimized approach to characterize nanobodies as tools for biochemical and structural studies of class IB phosphoinositide 3-kinases. Struct. Lond. Engl. 1993 29, 1371–1381.e6 (2021).
Google Scholar
Sasaki, A. T., Chun, C., Takeda, K. & Firtel, R. A. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J. Cell Biol. 167, 505–518 (2004).
Google Scholar
Yang, H., Wang, C., Zhang, L., Lv, J. & Ni, H. Rutin alleviates hypoxia/reoxygenation-induced injury in myocardial cells by up-regulating SIRT1 expression. Chem. Biol. Interact. 297, 44–49 (2019).
Google Scholar
Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).
Google Scholar
Heit, B. et al. PTEN functions to ‘prioritize’ chemotactic cues and prevent ‘distraction’ in migrating neutrophils. Nat. Immunol. 9, 743–752 (2008).
Google Scholar
Dong, X. et al. P-Rex1 is a primary Rac2 guanine nucleotide exchange factor in mouse neutrophils. Curr. Biol. CB 15, 1874–1879 (2005).
Google Scholar
Li, Z. et al. Directional sensing requires G beta gamma-mediated PAK1 and PIX alpha-dependent activation of Cdc42. Cell 114, 215–227 (2003).
Google Scholar
Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).
Google Scholar
Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).
Google Scholar
Strzelecka-Kiliszek, A. et al. Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim. Biophys. Acta Gen. Subj. 1861, 1009–1023 (2017).
Google Scholar
Xu, X. & Yao, L. Recent advances in the development of Rho kinase inhibitors (2015-2021). Med. Res. Rev. 44, 406–421 (2024).
Google Scholar
Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998).
Google Scholar
Weiner, O. D. et al. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis. PLoS Biol. 4, e38 (2006).
Google Scholar
Dey, S. & Zhou, H.-X. Why does synergistic activation of WASP, but Not N-WASP, by Cdc42 and PIP2 require Cdc42 prenylation? J. Mol. Biol. 435, 168035 (2023).
Google Scholar
Labrosse, R. et al. Outcomes of hematopoietic stem cell gene therapy for Wiskott-Aldrich syndrome. Blood 142, 1281–1296 (2023).
Google Scholar
Wang, F. The signaling mechanisms underlying cell polarity and chemotaxis. Cold Spring Harb. Perspect. Biol. 1, a002980 (2009).
Google Scholar
Dixit, N. & Simon, S. I. Chemokines, selectins and intracellular calcium flux: temporal and spatial cues for leukocyte arrest. Front. Immunol. 3, 188 (2012).
Google Scholar
Bagur, R. & Hajnóczky, G. Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol. Cell 66, 780–788 (2017).
Google Scholar
Feske, S., Wulff, H. & Skolnik, E. Y. Ion channels in innate and adaptive immunity. Annu. Rev. Immunol. 33, 291–353 (2015).
Google Scholar
Banoth, B. & Cassel, S. L. Mitochondria in innate immune signaling. Transl. Res. J. Lab. Clin. Med. 202, 52–68 (2018).
Google Scholar
Watson, J. L. et al. Synthetic Par polarity induces cytoskeleton asymmetry in unpolarized mammalian cells. Cell 186, 4710–4727.e35 (2023).
Google Scholar
Schaff, U. Y. et al. Calcium flux in neutrophils synchronizes beta2 integrin adhesive and signaling events that guide inflammatory recruitment. Ann. Biomed. Eng. 36, 632–646 (2008).
Google Scholar
Lindemann, O. et al. TRPC6 regulates CXCR2-mediated chemotaxis of murine neutrophils. J. Immunol. Baltim. Md 1950 190, 5496–5505 (2013).
Google Scholar
Downey, G. P. et al. Biophysical properties and microfilament assembly in neutrophils: modulation by cyclic AMP. J. Cell Biol. 114, 1179–1190 (1991).
Google Scholar
Nagata, S., Kebo, D. K., Kunkel, S. & Glovsky, M. M. Effect of adenylate cyclase activators on C5a-induced human neutrophil aggregation, enzyme release and superoxide production. Int. Arch. Allergy Immunol. 97, 194–199 (1992).
Google Scholar
del Pozo, M. A., Sánchez-Mateos, P., Nieto, M. & Sánchez-Madrid, F. Chemokines regulate cellular polarization and adhesion receptor redistribution during lymphocyte interaction with endothelium and extracellular matrix. Involvement of cAMP signaling pathway. J. Cell Biol. 131, 495–508 (1995).
Google Scholar
Li, H. et al. Association between Gαi2 and ELMO1/Dock180 connects chemokine signalling with Rac activation and metastasis. Nat. Commun. 4, 1706 (2013).
Google Scholar
Kamp, M. E., Liu, Y. & Kortholt, A. Function and Regulation of Heterotrimeric G Proteins during Chemotaxis. Int. J. Mol. Sci. 17, 90 (2016).
Google Scholar
De Vries, L. et al. Activator of G protein signaling 3 is a guanine dissociation inhibitor for Galpha I subunits. Proc. Natl Acad. Sci. Usa. 97, 14364–14369 (2000).
Google Scholar
Kamakura, S. et al. The cell polarity protein mInsc regulates neutrophil chemotaxis via a noncanonical G protein signaling pathway. Dev. Cell 26, 292–302 (2013).
Google Scholar
Wu, J. et al. Homer3 regulates the establishment of neutrophil polarity. Mol. Biol. Cell 26, 1629–1639 (2015).
Google Scholar
Essler, M. et al. Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J. Biol. Chem. 273, 21867–21874 (1998).
Google Scholar
Gan, X. et al. PRR5L degradation promotes mTORC2-mediated PKC-δ phosphorylation and cell migration downstream of Gα12. Nat. Cell Biol. 14, 686–696 (2012).
Google Scholar
Nürnberg, B., Beer-Hammer, S., Reisinger, E. & Leiss, V. Non-canonical G protein signaling. Pharmacol. Ther. 255, 108589 (2024).
Google Scholar
Liu, Y. et al. The regulatory role of PI3K in ageing-related diseases. Ageing Res. Rev. 88, 101963 (2023).
Google Scholar
Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287, 1049–1053 (2000).
Google Scholar
Schindler, J. F., Monahan, J. B. & Smith, W. G. p38 pathway kinases as anti-inflammatory drug targets. J. Dent. Res. 86, 800–811 (2007).
Google Scholar
Jiang, Y. et al. Structure-function studies of p38 mitogen-activated protein kinase. Loop 12 influences substrate specificity and autophosphorylation, but not upstream kinase selection. J. Biol. Chem. 272, 11096–11102 (1997).
Google Scholar
Zhang, Y. L. & Dong, C. MAP kinases in immune responses. Cell. Mol. Immunol. 2, 20–27 (2005).
Google Scholar
Wennerberg, K., Rossman, K. L. & Der, C. J. The Ras superfamily at a glance. J. Cell Sci. 118, 843–846 (2005).
Google Scholar
Raman, M., Chen, W. & Cobb, M. H. Differential regulation and properties of MAPKs. Oncogene 26, 3100–3112 (2007).
Google Scholar
Cambier, S., Gouwy, M. & Proost, P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell. Mol. Immunol. 20, 217–251 (2023).
Google Scholar
Chardin, P., Cussac, D., Maignan, S. & Ducruix, A. The Grb2 adaptor. FEBS Lett. 369, 47–51 (1995).
Google Scholar
Nickerson, S., Joy, S. T., Arora, P. S. & Bar-Sagi, D. An orthosteric inhibitor of the RAS-SOS interaction. Enzymes 34 Pt. B, 25–39 (2013).
Google Scholar
Downward, J. Control of ras activation. Cancer Surv. 27, 87–100 (1996).
Google Scholar
Scolnick, E. M., Papageorge, A. G. & Shih, T. Y. Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses. Proc. Natl. Acad. Sci. USA 76, 5355–5359 (1979).
Google Scholar
Mitin, N., Rossman, K. L. & Der, C. J. Signaling interplay in Ras superfamily function. Curr. Biol. CB 15, R563–574 (2005).
Google Scholar
Ersahin, T., Tuncbag, N. & Cetin-Atalay, R. The PI3K/AKT/mTOR interactive pathway. Mol. Biosyst. 11, 1946–1954 (2015).
Google Scholar
Fedorenko, I. V., Paraiso, K. H. T. & Smalley, K. S. M. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem. Pharmacol. 82, 201–209 (2011).
Google Scholar
Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351 Pt 2, 289–305 (2000).
Google Scholar
Carey, K. D., Watson, R. T., Pessin, J. E. & Stork, P. J. S. The requirement of specific membrane domains for Raf-1 phosphorylation and activation. J. Biol. Chem. 278, 3185–3196 (2003).
Google Scholar
Zhang, Y. & Dong, C. Regulatory mechanisms of mitogen-activated kinase signaling. Cell. Mol. Life Sci. CMLS 64, 2771–2789 (2007).
Google Scholar
Avruch, J. et al. Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog. Horm. Res. 56, 127–155 (2001).
Google Scholar
Campellone, K. G. & Welch, M. D. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237–251 (2010).
Google Scholar
Reinhard, M., Jarchau, T. & Walter, U. Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem. Sci. 26, 243–249 (2001).
Google Scholar
Takenawa, T. & Suetsugu, S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 8, 37–48 (2007).
Google Scholar
Danson, C. M., Pocha, S. M., Bloomberg, G. B. & Cory, G. O. Phosphorylation of WAVE2 by MAP kinases regulates persistent cell migration and polarity. J. Cell Sci. 120, 4144–4154 (2007).
Google Scholar
Mendoza, M. C. et al. ERK-MAPK drives lamellipodia protrusion by activating the WAVE2 regulatory complex. Mol. Cell 41, 661–671 (2011).
Google Scholar
Martinez-Quiles, N., Ho, H.-Y. H., Kirschner, M. W., Ramesh, N. & Geha, R. S. Erk/Src phosphorylation of cortactin acts as a switch on-switch off mechanism that controls its ability to activate N-WASP. Mol. Cell. Biol. 24, 5269–5280 (2004).
Google Scholar
Tcherkezian, J., Danek, E. I., Jenna, S., Triki, I. & Lamarche-Vane, N. Extracellular signal-regulated kinase 1 interacts with and phosphorylates CdGAP at an important regulatory site. Mol. Cell. Biol. 25, 6314–6329 (2005).
Google Scholar
Campbell, J. J., Foxman, E. F. & Butcher, E. C. Chemoattractant receptor cross talk as a regulatory mechanism in leukocyte adhesion and migration. Eur. J. Immunol. 27, 2571–2578 (1997).
Google Scholar
Heit, B., Liu, L., Colarusso, P., Puri, K. D. & Kubes, P. PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J. Cell Sci. 121, 205–214 (2008).
Google Scholar
Heit, B., Tavener, S., Raharjo, E. & Kubes, P. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J. Cell Biol. 159, 91–102 (2002).
Google Scholar
Khan, A. I. & Kubes, P. L-selectin: an emerging player in chemokine function. Microcirc. N. Y. N. 1994 10, 351–358 (2003).
Google Scholar
Roberts-Crowley, M. L., Mitra-Ganguli, T., Liu, L. & Rittenhouse, A. R. Regulation of voltage-gated Ca2+ channels by lipids. Cell Calcium 45, 589–601 (2009).
Google Scholar
Philips, R. L. et al. The JAK-STAT pathway at 30: Much learned, much more to do. Cell 185, 3857–3876 (2022).
Google Scholar
Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct. Target. Ther. 6, 402 (2021).
Google Scholar
Xin, P. et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 80, 106210 (2020).
Google Scholar
Coricello, A., Mesiti, F., Lupia, A., Maruca, A. & Alcaro, S. Inside perspective of the synthetic and computational toolbox of JAK inhibitors: recent updates. Mol. Basel Switz. 25, 3321 (2020).
Google Scholar
Durham, G. A., Williams, J. J. L., Nasim, M. T. & Palmer, T. M. Targeting SOCS proteins to control JAK-STAT signalling in disease. Trends Pharmacol. Sci. 40, 298–308 (2019).
Google Scholar
O’Shea, J. J. et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015).
Google Scholar
Li, H. S. & Watowich, S. S. Innate immune regulation by STAT-mediated transcriptional mechanisms. Immunol. Rev. 261, 84–101 (2014).
Google Scholar
Wilmes, S. et al. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science 367, 643–652 (2020).
Google Scholar
Saleiro, D. & Platanias, L. C. Interferon signaling in cancer. Non-canonical pathways and control of intracellular immune checkpoints. Semin. Immunol. 43, 101299 (2019).
Google Scholar
Lazear, H. M., Nice, T. J. & Diamond, M. S. Interferon-λ: immune functions at barrier surfaces and beyond. Immunity 43, 15–28 (2015).
Google Scholar
Parker, B. S., Rautela, J. & Hertzog, P. J. Antitumour actions of interferons: implications for cancer therapy. Nat. Rev. Cancer 16, 131–144 (2016).
Google Scholar
Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III interferons. Immunity 50, 907–923 (2019).
Google Scholar
Platanitis, E. et al. A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription. Nat. Commun. 10, 2921 (2019).
Google Scholar
Stegelmeier, A. A. et al. Type I interferon-mediated regulation of antiviral capabilities of neutrophils. Int. J. Mol. Sci. 22, 4726 (2021).
Google Scholar
Mahlakõiv, T., Hernandez, P., Gronke, K., Diefenbach, A. & Staeheli, P. Leukocyte-derived IFN-α/β and epithelial IFN-λ constitute a compartmentalized mucosal defense system that restricts enteric virus infections. PLoS Pathog. 11, e1004782 (2015).
Google Scholar
Hernández, P. P. et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat. Immunol. 16, 698–707 (2015).
Google Scholar
Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).
Google Scholar
Ambler, W. G. & Kaplan, M. J. Vascular damage in systemic lupus erythematosus. Nat. Rev. Nephrol. 20, 251–265 (2024).
Google Scholar
Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S. & Weiss, S. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J. Clin. Invest. 120, 1151–1164 (2010).
Google Scholar
Garcia-Diaz, A. et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19, 1189–1201 (2017).
Google Scholar
Du, W., Frankel, T. L., Green, M. & Zou, W. IFNγ signaling integrity in colorectal cancer immunity and immunotherapy. Cell. Mol. Immunol. 19, 23–32 (2022).
Google Scholar
Castro, F., Cardoso, A. P., Gonçalves, R. M., Serre, K. & Oliveira, M. J. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9, 847 (2018).
Google Scholar
Purbey, P. K. et al. Opposing tumor-cell-intrinsic and -extrinsic roles of the IRF1 transcription factor in antitumor immunity. Cell Rep. 43, 114289 (2024).
Google Scholar
Yan, Y., Zheng, L., Du, Q., Yan, B. & Geller, D. A. Interferon regulatory factor 1 (IRF-1) and IRF-2 regulate PD-L1 expression in hepatocellular carcinoma (HCC) cells. Cancer Immunol. Immunother. CII 69, 1891–1903 (2020).
Google Scholar
Teng, H.-W. et al. Interferon gamma induces higher neutrophil extracellular traps leading to tumor-killing activity in microsatellite stable colorectal cancer. Mol. Cancer Ther. 23, 1043–1056 (2024).
Google Scholar
Ye, L., Schnepf, D. & Staeheli, P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat. Rev. Immunol. 19, 614–625 (2019).
Google Scholar
Espinosa, V. et al. Type III interferon is a critical regulator of innate antifungal immunity. Sci. Immunol. 2, eaan5357 (2017).
Google Scholar
Philip, D. T. et al. Interferon lambda restricts herpes simplex virus skin disease by suppressing neutrophil-mediated pathology. mBio. 15, e0262323 (2024).
Google Scholar
Landy, E., Carol, H., Ring, A. & Canna, S. Biological and clinical roles of IL-18 in inflammatory diseases. Nat. Rev. Rheumatol. 20, 33–47 (2024).
Google Scholar
Song, M., Tang, Y., Cao, K., Qi, L. & Xie, K. Unveiling the role of interleukin-6 in pancreatic cancer occurrence and progression. Front. Endocrinol. 15, 1408312 (2024).
Google Scholar
Lederle, W. et al. IL-6 promotes malignant growth of skin SCCs by regulating a network of autocrine and paracrine cytokines. Int. J. Cancer 128, 2803–2814 (2011).
Google Scholar
Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).
Google Scholar
Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).
Google Scholar
Cimica, V., Chen, H.-C., Iyer, J. K. & Reich, N. C. Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-β1. PloS One 6, e20188 (2011).
Google Scholar
Kang, S., Tanaka, T., Narazaki, M. & Kishimoto, T. Targeting Interleukin-6 Signaling in Clinic. Immunity 50, 1007–1023 (2019).
Google Scholar
Shang, A. et al. Long non-coding RNA HOTTIP enhances IL-6 expression to potentiate immune escape of ovarian cancer cells by upregulating the expression of PD-L1 in neutrophils. J. Exp. Clin. Cancer Res. CR 38, 411 (2019).
Google Scholar
Lauber, S. et al. Novel function of Oncostatin M as a potent tumour-promoting agent in lung. Int. J. Cancer 136, 831–843 (2015).
Google Scholar
Masjedi, A. et al. Oncostatin M: a mysterious cytokine in cancers. Int. Immunopharmacol. 90, 107158 (2021).
Google Scholar
Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R. & Jorcyk, C. L. Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res. 65, 8896–8904 (2005).
Google Scholar
Zhou, Z. et al. Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J. Immunother. Cancer 9, e001946 (2021).
Google Scholar
Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315, 801–810 (2016).
Google Scholar
Adrover, J. M. et al. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat. Immunol. 21, 135–144 (2020).
Google Scholar
Sônego, F. et al. Paradoxical roles of the neutrophil in sepsis: protective and deleterious. Front. Immunol. 7, 155 (2016).
Google Scholar
Qi, Y. et al. Microfluidic device reveals new insights into impairment of neutrophil transmigration in patients with sepsis. Biosens. Bioelectron. 260, 116460 (2024).
Google Scholar
Wang, J.-F. et al. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: an animal study and a prospective case-control study. Anesthesiology 122, 852–863 (2015).
Google Scholar
Alves-Filho, J. C. et al. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc. Natl. Acad. Sci. USA 106, 4018–4023 (2009).
Google Scholar
Souto, F. O. et al. Essential role of CCR2 in neutrophil tissue infiltration and multiple organ dysfunction in sepsis. Am. J. Respir. Crit. Care Med. 183, 234–242 (2011).
Google Scholar
Zhang, H. et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin. Transl. Med. 13, e1170 (2023).
Google Scholar
Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13, 34–45 (2013).
Google Scholar
McDonald, B. et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 129, 1357–1367 (2017).
Google Scholar
von Brühl, M.-L. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 209, 819–835 (2012).
Google Scholar
Chen, Z. et al. Review: the emerging role of neutrophil extracellular traps in sepsis and sepsis-associated thrombosis. Front. Cell. Infect. Microbiol. 11, 653228 (2021).
Google Scholar
Joffre, J., Hellman, J., Ince, C. & Ait-Oufella, H. Endothelial responses in sepsis. Am. J. Respir. Crit. Care Med. 202, 361–370 (2020).
Google Scholar
Anaya, D. A. & Dellinger, E. P. Necrotizing soft-tissue infection: diagnosis and management. Clin. Infect. Dis. Publ. Infect. Dis. Soc. Am. 44, 705–710 (2007).
Google Scholar
Gabillot-Carré, M. & Roujeau, J.-C. Acute bacterial skin infections and cellulitis. Curr. Opin. Infect. Dis. 20, 118–123 (2007).
Google Scholar
Stevens, D. L. & Bryant, A. E. Necrotizing soft-tissue infections. N. Engl. J. Med. 377, 2253–2265 (2017).
Google Scholar
Hidalgo-Grass, C. et al. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J. 25, 4628–4637 (2006).
Google Scholar
Pinho-Ribeiro, F. A. et al. Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173, 1083–1097.e22 (2018).
Google Scholar
Borschitz, T., Schlicht, S., Siegel, E., Hanke, E. & von Stebut, E. Improvement of a clinical score for necrotizing fasciitis: ‘pain out of proportion’ and high CRP levels aid the diagnosis. PloS One 10, e0132775 (2015).
Google Scholar
Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).
Google Scholar
Loyer, C. et al. Impairment of neutrophil functions and homeostasis in COVID-19 patients: association with disease severity. Crit. Care 26, 155 (2022).
Google Scholar
Pastorek, M., Dúbrava, M. & Celec, P. On the origin of neutrophil extracellular traps in COVID-19. Front. Immunol. 13, 821007 (2022).
Google Scholar
Chen, R. et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J. Allergy Clin. Immunol. 146, 89–100 (2020).
Google Scholar
Barnes, B. J. et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J. Exp. Med. 217, e20200652 (2020).
Google Scholar
Bourgonje, A. R. et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 251, 228–248 (2020).
Google Scholar
Clark, D., Kotronia, E. & Ramsay, S. E. Frailty, aging, and periodontal disease: basic biologic considerations. Periodontol 2000 87, 143–156 (2021).
Google Scholar
Cabrera, L. E. et al. Characterization of low-density granulocytes in COVID-19. PLoS Pathog. 17, e1009721 (2021).
Google Scholar
Obermayer, A. et al. Neutrophil extracellular traps in fatal COVID-19-associated lung injury. Dis. Markers 2021, 5566826 (2021).
Google Scholar
Thierry, A. R. & Roch, B. Neutrophil extracellular traps and by-products play a key role in COVID-19: pathogenesis, risk factors, and therapy. J. Clin. Med. 9, 2942 (2020).
Google Scholar
Janiuk, K., Jabłońska, E. & Garley, M. Significance of NETs formation in COVID-19. Cells 10, 151 (2021).
Google Scholar
Behzadifard, M. & Soleimani, M. NETosis and SARS-COV-2 infection related thrombosis: a narrative review. Thromb. J. 20, 13 (2022).
Google Scholar
Gorochov, G. et al. Serum and salivary IgG and IgA response after COVID-19 messenger RNA vaccination. JAMA Netw. Open 7, e248051 (2024).
Google Scholar
Primorac Padjen, E. et al. Comparison of reporting rates of arthritis and arthralgia following AstraZeneca, Pfizer-BioNTech, Moderna, and Janssen vaccine administration against SARS-CoV-2 in 2021: analysis of European pharmacovigilance large-scale data. Rheumatol. Int. 44, 273–281 (2024).
Google Scholar
Siyer, O., Aksakal, B. & Basat, S. Evaluation of the effects of anakinra treatment on clinic and laboratory results in patients with COVID-19. North. Clin. Istanb. 10, 189–196 (2023).
Google Scholar
Morán, G., Uberti, B. & Quiroga, J. Role of cellular metabolism in the formation of neutrophil extracellular traps in airway diseases. Front. Immunol. 13, 850416 (2022).
Google Scholar
Dalbeth, N., Merriman, T. R. & Stamp, L. K. Gout. Lancet Lond. Engl. 388, 2039–2052 (2016).
Google Scholar
So, A. K. & Martinon, F. Inflammation in gout: mechanisms and therapeutic targets. Nat. Rev. Rheumatol. 13, 639–647 (2017).
Google Scholar
Martinon, F. & Glimcher, L. H. Gout: new insights into an old disease. J. Clin. Invest. 116, 2073–2075 (2006).
Google Scholar
Chen, C.-J. et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest. 116, 2262–2271 (2006).
Google Scholar
Popa-Nita, O. & Naccache, P. H. Crystal-induced neutrophil activation. Immunol. Cell Biol. 88, 32–40 (2010).
Google Scholar
Fernandes, M. J. & Naccache, P. H. The role of inhibitory receptors in monosodium urate crystal-induced inflammation. Front. Immunol. 9, 1883 (2018).
Google Scholar
Abhishek, A., Roddy, E. & Doherty, M. Gout – a guide for the general and acute physicians. Clin. Med. Lond. Engl. 17, 54–59 (2017).
Google Scholar
Tan, H., Li, Z., Zhang, S., Zhang, J. & Jia, E. Novel perception of neutrophil extracellular traps in gouty inflammation. Int. Immunopharmacol. 115, 109642 (2023).
Google Scholar
Cohen, R. E., Pillinger, M. H. & Toprover, M. Something old, something new: the ACR gout treatment guideline and its evolution from 2012 to 2020. Curr. Rheumatol. Rep. 23, 4 (2020).
Google Scholar
Peng, X. et al. Gout therapeutics and drug delivery. J. Control. Release J. Control. Release Soc. 362, 728–754 (2023).
Google Scholar
Manrique-Acevedo, C., Hirsch, I. B. & Eckel, R. H. Prevention of cardiovascular disease in type 1 diabetes. N. Engl. J. Med. 390, 1207–1217 (2024).
Google Scholar
Giovenzana, A., Carnovale, D., Phillips, B., Petrelli, A. & Giannoukakis, N. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab. Res. Rev. 38, e3483 (2022).
Google Scholar
Silvestre-Roig, C., Braster, Q., Ortega-Gomez, A. & Soehnlein, O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 17, 327–340 (2020).
Google Scholar
Talukdar, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18, 1407–1412 (2012).
Google Scholar
Watanabe, Y. et al. Bidirectional crosstalk between neutrophils and adipocytes promotes adipose tissue inflammation. FASEB J. Publ. Fed. Am. Soc. Exp. Biol. 33, 11821–11835 (2019).
Google Scholar
Bae, S. et al. Neutrophil proteinase 3 induces diabetes in a mouse model of glucose tolerance. Endocr. Res. 37, 35–45 (2012).
Google Scholar
Valle, A. et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes 62, 2072–2077 (2013).
Google Scholar
Bollyky, J. B. et al. Heterogeneity in recent-onset type 1 diabetes – a clinical trial perspective. Diabetes Metab. Res. Rev. 31, 588–594 (2015).
Google Scholar
Doğruel, H., Aydemir, M. & Balci, M. K. Management of diabetic foot ulcers and the challenging points: An endocrine view. World J. Diabetes 13, 27–36 (2022).
Google Scholar
Armstrong, D. G., Tan, T.-W., Boulton, A. J. M. & Bus, S. A. Diabetic foot ulcers: a review. JAMA 330, 62–75 (2023).
Google Scholar
Gauer, J. S., Ajjan, R. A. & Ariëns, R. A. S. Platelet-neutrophil interaction and thromboinflammation in diabetes: considerations for novel therapeutic approaches. J. Am. Heart Assoc. 11, e027071 (2022).
Google Scholar
Giannella, A. et al. PAR-4/Ca2+-calpain pathway activation stimulates platelet-derived microparticles in hyperglycemic type 2 diabetes. Cardiovasc. Diabetol. 20, 77 (2021).
Google Scholar
Joshi, M. B. et al. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 587, 2241–2246 (2013).
Google Scholar
Yadav, J. P. et al. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 32, 149–228 (2024).
Google Scholar
Rayman, G. et al. Guidelines on use of interventions to enhance healing of chronic foot ulcers in diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 36(Suppl 1), e3283 (2020).
Google Scholar
Guo, Y. et al. Multifunctional PtCuTe nanosheets with strong ROS scavenging and ROS-independent antibacterial properties promote diabetic wound healing. Adv. Mater. Deerfield Beach Fla 36, e2306292 (2024).
Google Scholar
Wang, H., Xu, Z., Zhao, M., Liu, G. & Wu, J. Advances of hydrogel dressings in diabetic wounds. Biomater. Sci. 9, 1530–1546 (2021).
Google Scholar
Schmidt, S., Moser, M. & Sperandio, M. The molecular basis of leukocyte recruitment and its deficiencies. Mol. Immunol. 55, 49–58 (2013).
Google Scholar
Zerbe, C. S. & Holland, S. M. Functional neutrophil disorders: chronic granulomatous disease and beyond. Immunol. Rev. 322, 71–80 (2024).
Google Scholar
Fekadu, J., Modlich, U., Bader, P. & Bakhtiar, S. Understanding the role of LFA-1 in leukocyte adhesion deficiency type I (LAD I): moving towards inflammation? Int. J. Mol. Sci. 23, 3578 (2022).
Google Scholar
Roos, D. et al. Hematologically important mutations: Leukocyte adhesion deficiency (second update). Blood Cells Mol. Dis. 99, 102726 (2023).
Google Scholar
Hanna, S. & Etzioni, A. Leukocyte adhesion deficiencies. Ann. N. Y. Acad. Sci. 1250, 50–55 (2012).
Google Scholar
Kuijpers, T. W. et al. Natural history and early diagnosis of LAD-1/variant syndrome. Blood 109, 3529–3537 (2007).
Google Scholar
Skokowa, J., Dale, D. C., Touw, I. P., Zeidler, C. & Welte, K. Severe congenital neutropenias. Nat. Rev. Dis. Prim. 3, 17032 (2017).
Google Scholar
Welte, K., Zeidler, C. & Dale, D. C. Severe congenital neutropenia. Semin. Hematol. 43, 189–195 (2006).
Google Scholar
Skokowa, J., Germeshausen, M., Zeidler, C. & Welte, K. Severe congenital neutropenia: inheritance and pathophysiology. Curr. Opin. Hematol. 14, 22–28 (2007).
Google Scholar
Mauch, P. et al. Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 31, 1319–1339 (1995).
Google Scholar
Lambertini, M., Ferreira, A. R., Del Mastro, L., Danesi, R. & Pronzato, P. Pegfilgrastim for the prevention of chemotherapy-induced febrile neutropenia in patients with solid tumors. Expert Opin. Biol. Ther. 15, 1799–1817 (2015).
Google Scholar
Matsumura, R. et al. Successful bone marrow transplantation in a patient with acute myeloid leukemia developed from severe congenital neutropenia using modified chemotherapy and conditioning regimen for leukemia. Hematol. Rep. 16, 98–105 (2024).
Google Scholar
Martínez-Alemán, S. R. et al. Understanding the entanglement: neutrophil extracellular traps (NETs) in cystic fibrosis. Front. Cell. Infect. Microbiol. 7, 104 (2017).
Google Scholar
Wang, G. & Nauseef, W. M. Neutrophil dysfunction in the pathogenesis of cystic fibrosis. Blood 139, 2622–2631 (2022).
Google Scholar
Voynow, J. A. & Shinbashi, M. Neutrophil elastase and chronic lung disease. Biomolecules 11, 1065 (2021).
Google Scholar
Sly, P. D. et al. Risk factors for bronchiectasis in children with cystic fibrosis. N. Engl. J. Med. 368, 1963–1970 (2013).
Google Scholar
Dickerhof, N. et al. Oxidative stress in early cystic fibrosis lung disease is exacerbated by airway glutathione deficiency. Free Radic. Biol. Med. 113, 236–243 (2017).
Google Scholar
Prandini, P. et al. Transient receptor potential ankyrin 1 channels modulate inflammatory response in respiratory cells from patients with cystic fibrosis. Am. J. Respir. Cell Mol. Biol. 55, 645–656 (2016).
Google Scholar
Yang, C. & Montgomery, M. Dornase alfa for cystic fibrosis. Cochrane Database Syst. Rev. 3, CD001127 (2021).
Google Scholar
Smith, S., Rowbotham, N. J. & Charbek, E. Inhaled antibiotics for pulmonary exacerbations in cystic fibrosis. Cochrane Database Syst. Rev. 8, CD008319 (2022).
Google Scholar
Smith, S., Rowbotham, N. J. & Edwards, C. T. Short-acting inhaled bronchodilators for cystic fibrosis. Cochrane Database Syst. Rev. 6, CD013666 (2022).
Google Scholar
Heinz, K. D., Walsh, A., Southern, K. W., Johnstone, Z. & Regan, K. H. Exercise versus airway clearance techniques for people with cystic fibrosis. Cochrane Database Syst. Rev. 6, CD013285 (2022).
Google Scholar
Taylor-Cousar, J. L., Robinson, P. D., Shteinberg, M. & Downey, D. G. CFTR modulator therapy: transforming the landscape of clinical care in cystic fibrosis. Lancet Lond. Engl. 402, 1171–1184 (2023).
Google Scholar
Bear, C. E. A therapy for most with cystic fibrosis. Cell 180, 211 (2020).
Google Scholar
Sergeev, V. et al. The extrapulmonary effects of cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Ann. Am. Thorac. Soc. 17, 147–154 (2020).
Google Scholar
Nunoi, H., Nakamura, H., Nishimura, T. & Matsukura, M. Recent topics and advanced therapies in chronic granulomatous disease. Hum. Cell 36, 515–527 (2023).
Google Scholar
CA, J. et al. Hypergammaglobulinernia associated with severe, recurrent and chronic non-specific infection. Am. J. Child 88, 388–392 (1954).
Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).
Google Scholar
Sharma, A. et al. Tamoxifen restores extracellular trap formation in neutrophils from patients with chronic granulomatous disease in a reactive oxygen species-independent manner. J. Allergy Clin. Immunol. 144, 597–600.e3 (2019).
Google Scholar
Marsh, R. A. et al. Chronic granulomatous disease-associated IBD resolves and does not adversely impact survival following allogeneic HCT. J. Clin. Immunol. 39, 653–667 (2019).
Google Scholar
Bengtsson, A. A. & Rönnblom, L. Systemic lupus erythematosus: still a challenge for physicians. J. Intern. Med. 281, 52–64 (2017).
Google Scholar
Tobin, R. et al. Atherosclerosis in systemic lupus erythematosus. Curr. Atheroscler. Rep. 25, 819–827 (2023).
Google Scholar
Rajagopalan, S. et al. Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. Blood 103, 3677–3683 (2004).
Google Scholar
Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).
Google Scholar
Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. Baltim. Md 1950 187, 538–552 (2011).
Google Scholar
Scapini, P., Marini, O., Tecchio, C. & Cassatella, M. A. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol. Rev. 273, 48–60 (2016).
Google Scholar
Denny, M. F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. Baltim. Md 1950 184, 3284–3297 (2010).
Google Scholar
Wang, L., Luqmani, R. & Udalova, I. A. The role of neutrophils in rheumatic disease-associated vascular inflammation. Nat. Rev. Rheumatol. 18, 158–170 (2022).
Google Scholar
Finckh, A. et al. Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol. 18, 591–602 (2022).
Google Scholar
Birkelund, S. et al. Proteomic analysis of synovial fluid from rheumatic arthritis and spondyloarthritis patients. Clin. Proteom. 17, 29 (2020).
Google Scholar
O’Neil, L. J. & Kaplan, M. J. Neutrophils in rheumatoid arthritis: breaking immune tolerance and fueling disease. Trends Mol. Med. 25, 215–227 (2019).
Google Scholar
McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).
Google Scholar
Zhou, Y. et al. Spontaneous secretion of the citrullination enzyme PAD2 and cell surface exposure of PAD4 by neutrophils. Front. Immunol. 8, 1200 (2017).
Google Scholar
Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra40 (2013).
Google Scholar
Carmona-Rivera, C. et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci. Immunol. 2, eaag3358 (2017).
Google Scholar
Delidakis, G., Kim, J. E., George, K. & Georgiou, G. Improving antibody therapeutics by manipulating the Fc domain: immunological and structural considerations. Annu. Rev. Biomed. Eng. 24, 249–274 (2022).
Google Scholar
Lefrançais, E. et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc. Natl. Acad. Sci. USA 109, 1673–1678 (2012).
Google Scholar
Raptis, S. Z., Shapiro, S. D., Simmons, P. M., Cheng, A. M. & Pham, C. T. N. Serine protease cathepsin G regulates adhesion-dependent neutrophil effector functions by modulating integrin clustering. Immunity 22, 679–691 (2005).
Google Scholar
Grillet, B. et al. Matrix metalloproteinases in arthritis: towards precision medicine. Nat. Rev. Rheumatol. 19, 363–377 (2023).
Google Scholar
Glennon-Alty, L., Hackett, A. P., Chapman, E. A. & Wright, H. L. Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic. Biol. Med. 125, 25–35 (2018).
Google Scholar
Eken, C. et al. Polymorphonuclear neutrophil-derived ectosomes interfere with the maturation of monocyte-derived dendritic cells. J. Immunol. Baltim. Md 1950 180, 817–824 (2008).
Google Scholar
Graham, D. B. & Xavier, R. J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578, 527–539 (2020).
Google Scholar
Drury, B., Hardisty, G., Gray, R. D. & Ho, G.-T. Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation. Cell. Mol. Gastroenterol. Hepatol. 12, 321–333 (2021).
Google Scholar
Danne, C. Neutrophils: Old cells in IBD, new actors in interactions with the gut microbiota. Clin. Transl. Med. 14, e1739 (2024).
Google Scholar
Magro, F. et al. European consensus on the histopathology of inflammatory bowel disease. J. Crohns Colitis 7, 827–851 (2013).
Google Scholar
Swaminathan, A. et al. Faecal myeloperoxidase as a biomarker of endoscopic activity in inflammatory bowel disease. J. Crohns Colitis 16, 1862–1873 (2022).
Google Scholar
Mortha, A. et al. Neutralizing anti-granulocyte macrophage-colony stimulating factor autoantibodies recognize post-translational glycosylations on granulocyte macrophage-colony stimulating factor years before diagnosis and predict complicated Crohn’s disease. Gastroenterology 163, 659–670 (2022).
Google Scholar
Danne, C., Skerniskyte, J., Marteyn, B. & Sokol, H. Neutrophils: from IBD to the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 21, 184–197 (2024).
Google Scholar
Danne, C. et al. CARD9 in neutrophils protects from colitis and controls mitochondrial metabolism and cell survival. Gut 72, 1081–1092 (2023).
Google Scholar
Han, X. et al. Loss of GM-CSF signalling in non-haematopoietic cells increases NSAID ileal injury. Gut 59, 1066–1078 (2010).
Google Scholar
Gierlikowska, B., Stachura, A., Gierlikowski, W. & Demkow, U. Phagocytosis, degranulation and extracellular traps release by neutrophils-the current knowledge, pharmacological modulation and future prospects. Front. Pharmacol. 12, 666732 (2021).
Google Scholar
Shen, F. et al. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species. Sci. Rep. 6, 19262 (2016).
Google Scholar
Cuffini, A. M. et al. The erythromycin-resistance in S. pyogenes does not limit the human polymorphonuclear cell antimicrobial activity. Int. J. Immunopathol. Pharmacol. 22, 239–242 (2009).
Google Scholar
Sharma, U. et al. Immunomodulatory active compounds from Tinospora cordifolia. J. Ethnopharmacol. 141, 918–926 (2012).
Google Scholar
Bystrzycka, W. et al. The effect of clindamycin and amoxicillin on neutrophil extracellular trap (NET) release. Cent. -Eur. J. Immunol. 41, 1–5 (2016).
Google Scholar
Arampatzioglou, A. et al. Clarithromycin enhances the antibacterial activity and wound healing capacity in type 2 diabetes mellitus by increasing LL-37 load on neutrophil extracellular traps. Front. Immunol. 9, 2064 (2018).
Google Scholar
Jerjomiceva, N. et al. Enrofloxacin enhances the formation of neutrophil extracellular traps in bovine granulocytes. J. Innate Immun. 6, 706–712 (2014).
Google Scholar
Reshetnikov, V. et al. Chemical tools for targeted amplification of reactive oxygen species in neutrophils. Front. Immunol. 9, 1827 (2018).
Google Scholar
Morstyn, G., Foote, M., Perkins, D. & Vincent, M. The clinical utility of granulocyte colony-stimulating factor: early achievements and future promise. Stem Cells Dayt. Ohio 12, 213–227 (1994).
Google Scholar
Welte, K. G-CSF: filgrastim, lenograstim and biosimilars. Expert Opin. Biol. Ther. 14, 983–993 (2014).
Google Scholar
Pinto, L. et al. Comparison of pegfilgrastim with filgrastim on febrile neutropenia, grade IV neutropenia and bone pain: a meta-analysis of randomized controlled trials. Curr. Med. Res. Opin. 23, 2283–2295 (2007).
Google Scholar
Kourlaba, G. et al. Comparison of filgrastim and pegfilgrastim to prevent neutropenia and maintain dose intensity of adjuvant chemotherapy in patients with breast cancer. Support. Care Cancer J. Multinatl. Assoc. Support. Care Cancer 23, 2045–2051 (2015).
Google Scholar
Kubo, K. et al. A randomized, double-blind trial of pegfilgrastim versus filgrastim for the management of neutropenia during CHASE(R) chemotherapy for malignant lymphoma. Br. J. Haematol. 174, 563–570 (2016).
Google Scholar
Blair, H. A. & Scott, L. J. Tbo-filgrastim: a review in neutropenic conditions. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 30, 153–160 (2016).
Takano, T. et al. Efficacy and safety of pegfilgrastim biosimilar MD-110 in patients with breast cancer receiving chemotherapy: Single-arm phase III. Cancer Med. 12, 20242–20250 (2023).
Google Scholar
Shi, Y. et al. 441P The prophylactic efficacy of telpegfilgrastim, a Y-shape branched pegylated G-CSF in patient with chemotherapy-induced neutropenia: A multicenter, randomized phase III study. Ann. Oncol. 34, S1635 (2023).
Google Scholar
Bunney, T. D. & Katan, M. Targeting G-CSF to treat autoinflammation. Nat. Immunol. 24, 736–737 (2023).
Google Scholar
Gabrilove, J. L. et al. Phase I study of granulocyte colony-stimulating factor in patients with transitional cell carcinoma of the urothelium. J. Clin. Invest. 82, 1454–1461 (1988).
Google Scholar
Morstyn, G. et al. Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet Lond. Engl. 1, 667–672 (1988).
Google Scholar
Trillet-Lenoir, V. et al. Recombinant granulocyte colony stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur. J. Cancer Oxf. Engl. 1990 29A, 319–324 (1993).
Google Scholar
Crawford, J. et al. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N. Engl. J. Med. 325, 164–170 (1991).
Google Scholar
Lord, B. I. et al. The kinetics of human granulopoiesis following treatment with granulocyte colony-stimulating factor in vivo. Proc. Natl. Acad. Sci. USA 86, 9499–9503 (1989).
Google Scholar
Demetri, G. D. & Griffin, J. D. Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791–2808 (1991).
Google Scholar
Smith, T. J. et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J. Clin. Oncol. J. Am. Soc. Clin. Oncol. 24, 3187–3205 (2006).
Google Scholar
Aapro, M. S. et al. EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphomas and solid tumours. Eur. J. Cancer Oxf. Engl. 1990 42, 2433–2453 (2006).
Google Scholar
Pettengell, R. et al. Neutropenia occurrence and predictors of reduced chemotherapy delivery: results from the INC-EU prospective observational European neutropenia study. Support. Care Cancer J. Multinatl. Assoc. Support. Care Cancer 16, 1299–1309 (2008).
Google Scholar
Kuderer, N. M., Dale, D. C., Crawford, J. & Lyman, G. H. Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J. Clin. Oncol. J. Am. Soc. Clin. Oncol. 25, 3158–3167 (2007).
Google Scholar
Renwick, W., Pettengell, R. & Green, M. Use of filgrastim and pegfilgrastim to support delivery of chemotherapy: twenty years of clinical experience. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 23, 175–186 (2009).
Google Scholar
Kojima, S., Fukuda, M., Miyajima, Y., Matsuyama, T. & Horibe, K. Treatment of aplastic anemia in children with recombinant human granulocyte colony-stimulating factor. Blood 77, 937–941 (1991).
Google Scholar
Toyama, K. et al. Clinical study of rhG-CSF (KRN8601) in patients with myelodysplastic syndrome. Rinsho Ketsueki 31, 937–945 (1990).
Google Scholar
Link, H. Current state and future opportunities in granulocyte colony-stimulating factor (G-CSF). Support. Care Cancer J. Multinatl. Assoc. Support. Care Cancer 30, 7067–7077 (2022).
Google Scholar
Dale, D. C. et al. A randomized controlled phase III trial of recombinant human granulocyte colony-stimulating factor (filgrastim) for treatment of severe chronic neutropenia. Blood 81, 2496–2502 (1993).
Google Scholar
Schmitt, M. et al. Biosimilar G-CSF based mobilization of peripheral blood hematopoietic stem cells for autologous and allogeneic stem cell transplantation. Theranostics 4, 280–289 (2014).
Google Scholar
Ringdén, O. et al. Treatment with granulocyte colony-stimulating factor after allogeneic bone marrow transplantation for acute leukemia increases the risk of graft-versus-host disease and death: a study from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. J. Clin. Oncol. J. Am. Soc. Clin. Oncol. 22, 416–423 (2004).
Google Scholar
De Clercq, E. The bicyclam AMD3100 story. Nat. Rev. Drug Discov. 2, 581–587 (2003).
Google Scholar
Woollard, S. M. & Kanmogne, G. D. Maraviroc: a review of its use in HIV infection and beyond. Drug Des. Devel. Ther. 9, 5447–5468 (2015).
Google Scholar
Grande, F., Giancotti, G., Ioele, G., Occhiuzzi, M. A. & Garofalo, A. An update on small molecules targeting CXCR4 as starting points for the development of anti-cancer therapeutics. Eur. J. Med. Chem. 139, 519–530 (2017).
Google Scholar
De Clercq, E. AMD3100/CXCR4 inhibitor. Front. Immunol. 6, 276 (2015).
Google Scholar
De Clercq, E. The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil). Biochem. Pharmacol. 77, 1655–1664 (2009).
Google Scholar
Hendrix, C. W. et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob. Agents Chemother. 44, 1667–1673 (2000).
Google Scholar
Liles, W. C. et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102, 2728–2730 (2003).
Google Scholar
Liles, W. C. et al. Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion (Paris) 45, 295–300 (2005).
Google Scholar
Eid, K. A., de, B., Miranda, E. C. M. & Aguiar, S. D. S. Mobilization and collection of CD34(+) cells for autologous transplantation of peripheral blood hematopoietic progenitor cells in children: analysis of two different granulocyte-colony stimulating factor doses. Rev. Bras. Hematol. E Hemoter. 37, 160–166 (2015).
Google Scholar
Reddy, G. K., Crawford, J. & Jain, V. K. The role of plerixafor (AMD3100) in mobilizing hematopoietic progenitor cells in patients with hematologic malignancies. Support. Cancer Ther. 3, 73–76 (2006).
Google Scholar
Brave, M. et al. FDA review summary: mozobil in combination with granulocyte colony-stimulating factor to mobilize hematopoietic stem cells to the peripheral blood for collection and subsequent autologous transplantation. Oncology 78, 282–288 (2010).
Google Scholar
McDermott, D. H. et al. Plerixafor for the treatment of WHIM syndrome. N. Engl. J. Med. 380, 163–170 (2019).
Google Scholar
Pillay, J. et al. Effect of the CXCR4 antagonist plerixafor on endogenous neutrophil dynamics in the bone marrow, lung and spleen. J. Leukoc. Biol. 107, 1175–1185 (2020).
Google Scholar
Wang, J., Tannous, B. A., Poznansky, M. C. & Chen, H. CXCR4 antagonist AMD3100 (plerixafor): from an impurity to a therapeutic agent. Pharmacol. Res. 159, 105010 (2020).
Google Scholar
Lecavalier-Barsoum, M. et al. Targeting the CXCL12/CXCR4 pathway and myeloid cells to improve radiation treatment of locally advanced cervical cancer. Int. J. Cancer 143, 1017–1028 (2018).
Google Scholar
Saur, D. et al. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 129, 1237–1250 (2005).
Google Scholar
Figueras, A. et al. A role for CXCR4 in peritoneal and hematogenous ovarian cancer dissemination. Mol. Cancer Ther. 17, 532–543 (2018).
Google Scholar
Li, T. et al. The expression of CXCR4, CXCL12 and CXCR7 in malignant pleural mesothelioma. J. Pathol. 223, 519–530 (2011).
Google Scholar
Jang, Y.-G., Go, R.-E., Hwang, K.-A. & Choi, K.-C. Resveratrol inhibits DHT-induced progression of prostate cancer cell line through interfering with the AR and CXCR4 pathway. J. Steroid Biochem. Mol. Biol. 192, 105406 (2019).
Google Scholar
Liu, H., Liu, Y., Liu, W., Zhang, W. & Xu, J. Author Correction: EZH2-mediated loss of miR-622 determines CXCR4 activation in hepatocellular carcinoma. Nat. Commun. 12, 6487 (2021).
Google Scholar
Pan, H. et al. Forkhead box C1 boosts triple-negative breast cancer metastasis through activating the transcription of chemokine receptor-4. Cancer Sci. 109, 3794–3804 (2018).
Google Scholar
Scala, S. et al. Human melanoma metastases express functional CXCR4. Clin. Cancer Res. J. Am. Assoc. Cancer Res. 12, 2427–2433 (2006).
Google Scholar
Righi, E. et al. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res 71, 5522–5534 (2011).
Google Scholar
Li, B. et al. AMD3100 augments the efficacy of mesothelin-targeted, immune-activating VIC-008 in mesothelioma by modulating intratumoral immunosuppression. Cancer Immunol. Res. 6, 539–551 (2018).
Google Scholar
Zeng, Y. et al. Dual blockade of CXCL12-CXCR4 and PD-1-PD-L1 pathways prolongs survival of ovarian tumor-bearing mice by prevention of immunosuppression in the tumor microenvironment. FASEB J. Publ. Fed. Am. Soc. Exp. Biol. 33, 6596–6608 (2019).
Google Scholar
Crees, Z. D. et al. Hematopoietic stem cell mobilization for allogeneic stem cell transplantation by motixafortide, a novel CXCR4 inhibitor. Blood Adv. 7, 5210–5214 (2023).
Google Scholar
Hoy, S. M. Motixafortide: first approval. Drugs 83, 1635–1643 (2023).
Google Scholar
Mullard, A. CXCR4 chemokine antagonist scores a first FDA approval for WHIM syndrome. Nat. Rev. Drug Discov. 23, 411 (2024).
Google Scholar
Geier, C. B. Mavorixafor: a new hope for WHIM syndrome. Blood 144, 1–2 (2024).
Google Scholar
Badolato, R. et al. A phase 3 randomized trial of mavorixafor, a CXCR4 antagonist, for WHIM syndrome. Blood 144, 35–45 (2024).
Google Scholar
Broderick, L. & Hoffman, H. M. IL-1 and autoinflammatory disease: biology, pathogenesis and therapeutic targeting. Nat. Rev. Rheumatol. 18, 448–463 (2022).
Google Scholar
An, E. An EUA for anakinra (Kineret) for COVID-19. Med Lett Drugs Ther 64, e203–e204 (2022).
Kenney-Jung, D. L. et al. Febrile infection-related epilepsy syndrome treated with anakinra. Ann. Neurol. 80, 939–945 (2016).
Google Scholar
Lai, Y.-C. et al. Anakinra usage in febrile infection related epilepsy syndrome: an international cohort. Ann. Clin. Transl. Neurol. 7, 2467–2474 (2020).
Google Scholar
Wang, T. K. M. & Klein, A. L. Rilonacept (Interleukin-1 Inhibition) for the treatment of pericarditis. Curr. Cardiol. Rep. 24, 23–30 (2022).
Google Scholar
Imazio, M. et al. Sustained pericarditis recurrence risk reduction with long-term rilonacept. J. Am. Heart Assoc. 13, e032516 (2024).
Google Scholar
Garbers, C., Heink, S., Korn, T. & Rose-John, S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat. Rev. Drug Discov. 17, 395–412 (2018).
Google Scholar
Orders, M. An EUA for Tocilizumab (Actemra) for COVID-19. Med. Lett. Drugs Ther. 63, 113–114 (2021).
Kleiter, I. & Gold, R. Present and future therapies in neuromyelitis optica spectrum disorders. Neurother. J. Am. Soc. Exp. Neurother. 13, 70–83 (2016).
Google Scholar
Zhang, C. et al. Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. Lancet Neurol. 19, 391–401 (2020).
Google Scholar
Rose-John, S., Jenkins, B. J., Garbers, C., Moll, J. M. & Scheller, J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat. Rev. Immunol. 23, 666–681 (2023).
Google Scholar
Dwyer, M. P. et al. Discovery of 2-hydroxy-N, N-dimethyl-3-2-[[(R)-1-(5-methylfuran-2-yl) propyl] amino]-3, 4-dioxocyclobut-1-enylamino benzamide (SCH 527123): a potent, orally bioavailable CXCR2/CXCR1 receptor antagonist. J. Med. Chem. 49, 7603–7606 (2006).
Nair, P. et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 42, 1097–1103 (2012).
Google Scholar
Varney, M. L. et al. Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases. Cancer Lett. 300, 180–188 (2011).
Google Scholar
Singh, S. et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin. Cancer Res. 15, 2380–2386 (2009).
Google Scholar
Lazennec, G., Rajarathnam, K. & Richmond, A. CXCR2 chemokine receptor—a master regulator in cancer and physiology. Trends Mol. Med. 30, 37–55 (2024).
Google Scholar
McLornan, D. P., Pope, J. E., Gotlib, J. & Harrison, C. N. Current and future status of JAK inhibitors. Lancet Lond. Engl. 398, 803–816 (2021).
Google Scholar
Almasi, S. et al. Effect of tofacitinib on clinical and laboratory findings in severe and resistant patients with COVID-19. Int. Immunopharmacol. 122, 110565 (2023).
Google Scholar
Guimarães, P. O. et al. Tofacitinib in patients hospitalized with COVID-19 pneumonia. N. Engl. J. Med. 385, 406–415 (2021).
Google Scholar
Bissonnette, R. et al. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br. J. Dermatol. 175, 902–911 (2016).
Google Scholar
Liu, L. Y., Craiglow, B. G., Dai, F. & King, B. A. Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J. Am. Acad. Dermatol. 76, 22–28 (2017).
Google Scholar
van der Heijde, D. et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann. Rheum. Dis. 76, 1340–1347 (2017).
Google Scholar
Curtis, J. R., Xie, F., Yun, H., Bernatsky, S. & Winthrop, K. L. Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 75, 1843–1847 (2016).
Google Scholar
Taylor, P. C. Clinical efficacy of launched JAK inhibitors in rheumatoid arthritis. Rheumatol. Oxf. Engl. 58, i17–i26 (2019).
Google Scholar
Rubin, R. Baricitinib is first approved COVID-19 immunomodulatory treatment. JAMA 327, 2281 (2022).
Google Scholar
Freitas, E., Guttman-Yassky, E. & Torres, T. Baricitinib for the treatment of alopecia areata. Drugs 83, 761–770 (2023).
Google Scholar
Gavegnano, C. et al. Baricitinib reverses HIV-associated neurocognitive disorders in a SCID mouse model and reservoir seeding in vitro. J. Neuroinflammation 16, 182 (2019).
Google Scholar
Przepiorka, D. et al. FDA approval summary: ruxolitinib for treatment of steroid-refractory acute graft-versus-host disease. Oncologist 25, e328–e334 (2020).
Google Scholar
Ajayi, S. et al. Ruxolitinib. Recent Results Cancer Res. 212, 119–132 (2018).
Google Scholar
Mohamed, M.-E. F., Bhatnagar, S., Parmentier, J. M., Nakasato, P. & Wung, P. Upadacitinib: mechanism of action, clinical, and translational science. Clin. Transl. Sci. 17, e13688 (2024).
Google Scholar
Nader, A. et al. Exposure-response analyses of upadacitinib efficacy and safety in phase II and III studies to support benefit-risk assessment in rheumatoid arthritis. Clin. Pharmacol. Ther. 107, 994–1003 (2020).
Google Scholar
Dignass, A., Esters, P. & Flauaus, C. Upadacitinib in Crohn’s disease. Expert Opin. Pharmacother. 25, 359–370 (2024).
Google Scholar
Markham, A. & Keam, S. J. Peficitinib: first global approval. Drugs 79, 887–891 (2019).
Google Scholar
Talpaz, M. & Kiladjian, J.-J. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia 35, 1–17 (2021).
Google Scholar
Keam, S. J. Momelotinib: first approval. Drugs 83, 1709–1715 (2023).
Google Scholar
Guo, R.-F. & Ward, P. A. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 23, 821–852 (2005).
Google Scholar
Ghosh, M. & Rana, S. The anaphylatoxin C5a: structure, function, signaling, physiology, disease, and therapeutics. Int. Immunopharmacol. 118, 110081 (2023).
Google Scholar
Khan, M. M. & Molony, D. A. In ANCA-associated vasculitis, avacopan was superior to prednisone taper for sustained remission. Ann. Intern. Med. 174, JC79 (2021).
Google Scholar
Jayne, D. R. W., Merkel, P. A., Schall, T. J., Bekker, P. & Advocate Study Group. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).
Google Scholar
Geetha, D. et al. Efficacy and safety of avacopan in patients with ANCA-associated vasculitis receiving rituximab in a randomised trial. Ann. Rheum. Dis. 83, 223–232 (2024).
Google Scholar
Gomez-Arboledas, A. et al. C5aR1 antagonism alters microglial polarization and mitigates disease progression in a mouse model of Alzheimer’s disease. Acta Neuropathol. Commun. 10, 116 (2022).
Google Scholar
Lee, A. Avacopan: first approval. Drugs 82, 79–85 (2022).
Google Scholar
van Rhee, F. et al. Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol. 15, 966–974 (2014).
Google Scholar
Schall, T. J. & Proudfoot, A. E. I. Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat. Rev. Immunol. 11, 355–363 (2011).
Google Scholar
Bilusic, M. et al. Phase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumors. J. Immunother. Cancer 7, 240 (2019).
Google Scholar
Gordon, M., Sinopoulou, V., Akobeng, A. K., Sarian, A. & Moran, G. W. Infliximab for maintenance of medically-induced remission in Crohn’s disease. Cochrane Database Syst. Rev. 2, CD012609 (2024).
Google Scholar
Chen, J., Liao, J., Xiang, L., Zhang, S. & Yan, Y. Current knowledge of TNF-α monoclonal antibody infliximab in treating Kawasaki disease: a comprehensive review. Front. Immunol. 14, 1237670 (2023).
Google Scholar
Schreiber, S. et al. Perspectives on subcutaneous infliximab for rheumatic diseases and inflammatory bowel disease: before, during, and after the COVID-19 era. Adv. Ther. 39, 2342–2364 (2022).
Google Scholar
Brodsky, R. A. How I treat paroxysmal nocturnal hemoglobinuria. Blood 137, 1304–1309 (2021).
Google Scholar
Paul, F. et al. International Delphi consensus on the management of AQP4-IgG+ NMOSD: recommendations for eculizumab, inebilizumab, and satralizumab. Neurol. Neuroimmunol. Neuroinflammation 10, e200124 (2023).
Google Scholar
Harris, E. FDA approves vilobelimab for emergency use in hospitalized adults. JAMA 329, 1544 (2023).
Google Scholar
Lu, J. D., Milakovic, M., Ortega-Loayza, A. G., Marzano, A. V. & Alavi, A. Pyoderma gangrenosum: proposed pathogenesis and current use of biologics with an emphasis on complement C5a inhibitor IFX-1. Expert Opin. Investig. Drugs 29, 1179–1185 (2020).
Google Scholar
Giamarellos-Bourboulis, E. J. et al. Clinical efficacy of complement C5a inhibition by IFX-1 in hidradenitis suppurativa: an open-label single-arm trial in patients not eligible for adalimumab. Br. J. Dermatol. 183, 176–178 (2020).
Google Scholar
Vu, T., Wiendl, H., Katsuno, M., Reddel, S. W. & Howard, J. F. Ravulizumab in myasthenia gravis: a review of the current evidence. Neuropsychiatr. Dis. Treat. 19, 2639–2655 (2023).
Google Scholar
Begum, F., Khan, N., Boisclair, S., Malieckal, D. A. & Chitty, D. Complement inhibitors in the management of complement-mediated hemolytic uremic syndrome and paroxysmal nocturnal hemoglobinuria. Am. J. Ther. 30, e209–e219 (2023).
Google Scholar
Griffin, M. et al. Real-world experience of pegcetacoplan in paroxysmal nocturnal hemoglobinuria. Am. J. Hematol. (2024).
Sahebnasagh, A. et al. Neutrophil elastase inhibitor (sivelestat) may be a promising therapeutic option for management of acute lung injury/acute respiratory distress syndrome or disseminated intravascular coagulation in COVID-19. J. Clin. Pharm. Ther. 45, 1515–1519 (2020).
Google Scholar
Matera, M. G., Rogliani, P., Ora, J., Calzetta, L. & Cazzola, M. A comprehensive overview of investigational elastase inhibitors for the treatment of acute respiratory distress syndrome. Expert Opin. Investig. Drugs 32, 793–802 (2023).
Google Scholar
Zeng, W., Song, Y., Wang, R., He, R. & Wang, T. Neutrophil elastase: from mechanisms to therapeutic potential. J. Pharm. Anal. 13, 355–366 (2023).
Google Scholar
Churg, A. et al. Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 185, 34–43 (2012).
Google Scholar
Lin, W., Chen, H., Chen, X. & Guo, C. The roles of neutrophil-derived myeloperoxidase (MPO) in diseases: the new progress. Antioxid. Basel Switz. 13, 132 (2024).
Google Scholar
Holliday, Z. M. et al. Non-randomized trial of dornase alfa for acute respiratory distress syndrome secondary to COVID-19. Front. Immunol. 12, 714833 (2021).
Google Scholar
Fisher, J. et al. Proteome profiling of recombinant DNAse therapy in reducing NETs and aiding recovery in COVID-19 patients. Mol. Cell. Proteom. MCP 20, 100113 (2021).
Google Scholar
Chen, J. et al. DNA of neutrophil extracellular traps promote NF-κB-dependent autoimmunity via cGAS/TLR9 in chronic obstructive pulmonary disease. Signal Transduct. Target. Ther. 9, 163 (2024).
Google Scholar
Ray, A. L. et al. G-CSF is a novel mediator of T-cell suppression and an immunotherapeutic target for women with colon cancer. Clin. Cancer Res. J. Am. Assoc. Cancer Res. 29, 2158–2169 (2023).
Google Scholar
Liu, L. et al. Cancer-associated adipocyte-derived G-CSF promotes breast cancer malignancy via Stat3 signaling. J. Mol. Cell Biol. 12, 723–737 (2020).
Google Scholar
Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).
Google Scholar
Falchook, G. S. et al. A phase 1a/1b trial of CSF-1R inhibitor LY3022855 in combination with durvalumab or tremelimumab in patients with advanced solid tumors. Invest. N. Drugs 39, 1284–1297 (2021).
Google Scholar
Weber, J. et al. 1040O Phase II trial of ipilimumab, nivolumab and tocilizumab for unresectable metastatic melanoma. Ann. Oncol. 32, S869 (2021).
Google Scholar
Greene, S. et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clin. Cancer Res. J. Am. Assoc. Cancer Res. 26, 1420–1431 (2020).
Google Scholar
Kargl, J. et al. Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC. JCI Insight 4, e130850 (2019).
Google Scholar
Wang, G. et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 6, 80–95 (2016).
Google Scholar
Ortiz-Espinosa, S. et al. Complement C5a induces the formation of neutrophil extracellular traps by myeloid-derived suppressor cells to promote metastasis. Cancer Lett. 529, 70–84 (2022).
Google Scholar
Corrales, L. et al. Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression. J. Immunol. Baltim. Md 1950 189, 4674–4683 (2012).
Google Scholar
Jung, K. et al. Targeting CXCR4-dependent immunosuppressive Ly6Clow monocytes improves antiangiogenic therapy in colorectal cancer. Proc. Natl. Acad. Sci. USA 114, 10455–10460 (2017).
Google Scholar
Bockorny, B. et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat. Med. 26, 878–885 (2020).
Google Scholar
Lu, X. et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543, 728–732 (2017).
Google Scholar
Proia, T. A. et al. STAT3 antisense oligonucleotide remodels the suppressive tumor microenvironment to enhance immune activation in combination with anti-PD-L1. Clin. Cancer Res. J. Am. Assoc. Cancer Res. 26, 6335–6349 (2020).
Google Scholar
Yang, J. et al. WP1066, a small molecule inhibitor of STAT3, chemosensitizes paclitaxel-resistant ovarian cancer cells to paclitaxel by simultaneously inhibiting the activity of STAT3 and the interaction of STAT3 with Stathmin. Biochem. Pharmacol. 221, 116040 (2024).
Google Scholar
Tsimberidou, A. M. et al. Phase 1 trial evaluating TTI-101, a first-in-class, orally bioavailable, small molecule, inhibitor of STAT3, in patients with advanced solid tumors. J. Clin. Oncol. 41, 3018 (2023).
Google Scholar
Janjua, D. et al. Prognostic and therapeutic potential of STAT3: opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit. Rev. Oncol. Hematol. 197, 104346 (2024).
Google Scholar
Leonard, W. et al. Myeloid-derived suppressor cells reveal radioprotective properties through arginase-induced l-arginine depletion. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 119, 291–299 (2016).
Google Scholar
Cao, Y., Feng, Y., Zhang, Y., Zhu, X. & Jin, F. L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo. BMC Cancer 16, 343 (2016).
Google Scholar
Langarizadeh, M. A. et al. An overview of the history, current strategies, and potential future treatment approaches in erectile dysfunction: a comprehensive review. Sex. Med. Rev. 11, 253–267 (2023).
Google Scholar
Serafini, P. et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691–2702 (2006).
Google Scholar
Weed, D. T. et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. J. Am. Assoc. Cancer Res. 21, 39–48 (2015).
Google Scholar
Weed, D. T. et al. The reversal of immune exclusion mediated by tadalafil and an anti-tumor vaccine also induces PDL1 upregulation in recurrent head and neck squamous cell carcinoma: interim analysis of a phase I clinical trial. Front. Immunol. 10, 1206 (2019).
Google Scholar
Chen, D. et al. Exenatide enhanced the antitumor efficacy on PD-1 blockade by the attenuation of neutrophil extracellular traps. Biochem. Biophys. Res. Commun. 619, 97–103 (2022).
Google Scholar
Kim, G. T. et al. Improving anticancer effect of aPD-L1 through lowering neutrophil infiltration by PLAG in tumor implanted with MB49 mouse urothelial carcinoma. BMC Cancer 22, 727 (2022).
Google Scholar
Tavazoie, M. F. et al. LXR/ApoE activation restricts innate immune suppression in cancer. Cell 172, 825–840.e18 (2018).
Google Scholar
Behrens, L. M., van den Berg, T. K. & van Egmond, M. Targeting the CD47-SIRPα innate immune checkpoint to potentiate antibody therapy in cancer by neutrophils. Cancers 14, 3366 (2022).
Google Scholar
Daver, N. et al. A phase 3, randomized, open-label study evaluating the safety and efficacy of magrolimab in combination with azacitidine in previously untreated patients with TP53-mutant acute myeloid leukemia. Blood 138, 3426 (2021).
Google Scholar
Mehta, A. et al. Lemzoparlimab, a differentiated anti-cd47 antibody in combination with rituximab in relapsed and refractory non-Hodgkin’s lymphoma: initial clinical results. Blood 138, 3542 (2021).
Google Scholar
Lopez-Beltran, A., Cookson, M. S., Guercio, B. J. & Cheng, L. Advances in diagnosis and treatment of bladder cancer. BMJ 384, e076743 (2024).
Google Scholar
Kemp, T. J. et al. Neutrophil stimulation with Mycobacterium bovis bacillus Calmette-Guerin (BCG) results in the release of functional soluble TRAIL/Apo-2L. Blood 106, 3474–3482 (2005).
Google Scholar
Borges, V. M., Marinho, F. V., Caldeira, C. V. A., de Queiroz, N. M. G. P. & Oliveira, S. C. Bacillus Calmette-Guérin immunotherapy induces an efficient antitumor response to control murine melanoma depending on MyD88 signaling. Front. Immunol. 15, 1380069 (2024).
Google Scholar
Da Gama Duarte, J. et al. Autoantibodies may predict immune-related toxicity: results from a phase I study of intralesional bacillus Calmette-Guérin followed by ipilimumab in patients with advanced metastatic melanoma. Front. Immunol. 9, 411 (2018).
Google Scholar
Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).
Google Scholar
Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).
Google Scholar
Yamazaki, T. et al. Galunisertib plus neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a single-arm, phase 2 trial. Lancet Oncol. 23, 1189–1200 (2022).
Google Scholar
Formenti, S. C. et al. Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin. Cancer Res. J. Am. Assoc. Cancer Res. 24, 2493–2504 (2018).
Google Scholar
Yoo, C. et al. Phase 2 trial of bintrafusp alfa as second-line therapy for patients with locally advanced/metastatic biliary tract cancers. Hepatol. Baltim. Md 78, 758–770 (2023).
Linde, I. L. et al. Neutrophil-activating therapy for the treatment of cancer. Cancer Cell 41, 356–372.e10 (2023).
Google Scholar
Fontes, J., Castellano-González, G., Macena, B. C. L. & Afonso, P. Hitchhiking to the abyss. Ecol. Evol. 13, e10126 (2023).
Google Scholar
Shaw, I. et al. Advancements and prospects of lipid-based nanoparticles: dual frontiers in cancer treatment and vaccine development. J. Microencapsul. 41, 226–254 (2024).
Google Scholar
Wang, M. et al. Neutrophil hitchhiking: riding the drug delivery wave to treat diseases. Drug Dev. Res. 85, e22169 (2024).
Google Scholar
Pan, J. et al. Bacteria-derived outer-membrane vesicles hitchhike neutrophils to enhance ischemic stroke therapy. Adv. Mater. Deerfield Beach Fla 35, e2301779 (2023).
Google Scholar
Mu, Q. et al. Ligustrazine nanoparticle hitchhiking on neutrophils for enhanced therapy of cerebral ischemia-reperfusion injury. Adv. Sci. Weinh. Baden.-Wurtt. Ger. 10, e2301348 (2023).
Luo, Z. et al. Neutrophil hitchhiking for drug delivery to the bone marrow. Nat. Nanotechnol. 18, 647–656 (2023).
Google Scholar
Tang, X. et al. Natural cell based biomimetic cellular transformers for targeted therapy of digestive system cancer. Theranostics 12, 7080–7107 (2022).
Google Scholar
Cully, M. Exosome-based candidates move into the clinic. Nat. Rev. Drug Discov. 20, 6–7 (2021).
Google Scholar
Thébaud, B. & Stewart, D. J. Exosomes: cell garbage can, therapeutic carrier, or trojan horse? Circulation 126, 2553–2555 (2012).
Google Scholar
Li, L. et al. Neutrophil-derived exosome from systemic sclerosis inhibits the proliferation and migration of endothelial cells. Biochem. Biophys. Res. Commun. 526, 334–340 (2020).
Google Scholar
Yu, Y. et al. An injectable, activated neutrophil-derived exosome mimetics/extracellular matrix hybrid hydrogel with antibacterial activity and wound healing promotion effect for diabetic wound therapy. J. Nanobiotechnol. 21, 308 (2023).
Google Scholar
Wang, J. et al. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy. Biomaterials 273, 120784 (2021).
Google Scholar
Genschmer, K. R. et al. Activated PMN exosomes: pathogenic entities causing matrix destruction and disease in the lung. Cell 176, 113–126.e15 (2019).
Google Scholar
Blanch-Ruiz, M. A., Ortega-Luna, R., Martínez-Cuesta, M. Á. & Álvarez, Á. The neutrophil secretome as a crucial link between inflammation and thrombosis. Int. J. Mol. Sci. 22, 4170 (2021).
Google Scholar
Wang, H., Zang, J., Zhao, Z., Zhang, Q. & Chen, S. The advances of neutrophil-derived effective drug delivery systems: a key review of managing tumors and inflammation. Int. J. Nanomed. 16, 7663–7681 (2021).
Google Scholar
Clarke, S. J. et al. Use of inflammatory markers to guide cancer treatment. Clin. Pharmacol. Ther. 90, 475–478 (2011).
Google Scholar
Bhattacharya, S. & Munshi, C. Biological significance of C-reactive protein, the ancient acute phase functionary. Front. Immunol. 14, 1238411 (2023).
Google Scholar
Demir, A. K. et al. The relationship between the neutrophil-lymphocyte ratio and disease activity in patients with ulcerative colitis. Kaohsiung J. Med. Sci. 31, 585–590 (2015).
Google Scholar
Liu, J. et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J. Transl. Med. 18, 206 (2020).
Google Scholar
Diakos, C. I., Charles, K. A., McMillan, D. C. & Clarke, S. J. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 15, e493–503 (2014).
Google Scholar
Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).
Google Scholar
Proctor, M. J. et al. A derived neutrophil to lymphocyte ratio predicts survival in patients with cancer. Br. J. Cancer 107, 695–699 (2012).
Google Scholar
Chua, W., Charles, K. A., Baracos, V. E. & Clarke, S. J. Neutrophil/lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer. Br. J. Cancer 104, 1288–1295 (2011).
Google Scholar
Zhang, M. et al. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct. Target. Ther. 9, 88 (2024).
Google Scholar
Deng, Z. et al. TGF-β signaling in health, disease, and therapeutics. Signal Transduct. Target. Ther. 9, 61 (2024).
Google Scholar
Kalafati, L., Hatzioannou, A., Hajishengallis, G. & Chavakis, T. The role of neutrophils in trained immunity. Immunol. Rev. 314, 142–157 (2023).
Google Scholar
Chen, M. & Wang, S. Preclinical development and clinical studies of targeted JAK/STAT combined Anti-PD-1/PD-L1 therapy. Int. Immunopharmacol. 130, 111717 (2024).
Google Scholar
de Oliveira, S., Rosowski, E. E. & Huttenlocher, A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol. 16, 378–391 (2016).
Google Scholar
Jung, E. H. et al. Mobilization of hematopoietic stem cells with lenograstim in multiple myeloma patients: Prospective multicenter observational study (KMM122). Cancer Med. 12, 9186–9193 (2023).
Google Scholar
Tanaka, H. et al. Three types of recombinant human granulocyte colony-stimulating factor have equivalent biological activities in monkeys. Cytokine 9, 360–369 (1997).
Google Scholar
Gálffy, G. [Lipegfilgrastim – long acting G-CSF in prevention of chemotherapy-induced neutropenia]. Magy. Onkol. 62, 195–200 (2018).
link