The AROMHA brain health test is a remote olfactory assessment to screen for cognitive impairment

0
The AROMHA brain health test is a remote olfactory assessment to screen for cognitive impairment
  • Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 19, 1598–1695 (2023). (2023).

  • Jack, C. R. et al. Longitudinal Tau PET in ageing and Alzheimer’s disease. Brain 141, 1517–1528 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Bateman, R. J. et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl. J. Med. 367(9), 795–804 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Villemagne, V. L. et al. Amyloid Β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 12, 11 (2013).

    Article 

    Google Scholar 

  • Jia, J. et al. Biomarker changes during 20 years preceding Alzheimer’s disease. N Engl. J. Med. 390, 712–722 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Munro, C. E. et al. Recent contributions to the field of subjective cognitive decline in aging: A literature review. Alz Dem Diag Ass Dis. Mo. 15, e12475 (2023).

    Article 
    MATH 

    Google Scholar 

  • Knopman, D. S. et al. Alzheimer disease. Nat. Rev. Dis. Primers. 7, 33 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Cummings, J., Feldman, H. H. & Scheltens, P. The rights of precision drug development for Alzheimer’s disease. Alz Res. Therapy. 11, 76 (2019).

    Article 
    MATH 

    Google Scholar 

  • Sperling, R. A., Jack, C. R. & Aisen, P. S. Testing the right target and right drug at the right stage. Sci. Transl Med. 3, 111cm33 (2011).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kim, C. K. et al. Alzheimer’s disease: key insights from two decades of clinical trial failures. J. Alzheimer’s Disease. 87, 83–100 (2022).

    Article 
    MATH 

    Google Scholar 

  • Cummings, J. et al. Re-engineering alzheimer clinical trials: global alzheimer’s platform network. J. Prev. Alzheimer’s Disease. 3, 114 (2016).

    CAS 

    Google Scholar 

  • Reiss, A. B. et al. Alzheimer’s disease: many failed trials, so where do we go from here? J. Investig. Med. 68, 1135–1140 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Murphy, C. Olfactory and other sensory impairments in alzheimer disease. Nat. Rev. Neurol. 15, 11–24 (2019).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Albers, M. W., Tabert, M. H. & Devanand, D. P. Olfactory dysfunction as a predictor of neurodegenerative disease. Curr. Neurol. Neurosci. Rep. 6, 379–386 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature 583, 253–258 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Sosulski, D. L., Bloom, M. L., Cutforth, T., Axel, R. & Datta, S. R. Distinct representations of olfactory information in different cortical centres. Nature 472, 213–216 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Diez, I. et al. Tau propagation in the brain olfactory circuits is associated with smell perception changes in aging. Nat. Commun. 15, 4809 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Arnold, S. E. et al. Olfactory epithelium amyloid-β and paired helical filament-tau pathology in alzheimer disease. Ann. Neurol. 67, 462–469 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jobin, B., Boller, B. & Frasnelli, J. Volumetry of olfactory structures in mild cognitive impairment and Alzheimer’s disease: A systematic review and a Meta-Analysis. Brain Sci. 11, 1010 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jobin, B., Boller, B. & Frasnelli, J. Smaller grey matter volume in the central olfactory system in mild cognitive impairment. Exp. Gerontol. 183, 112325 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Lu et al. Functional connectivity between the Resting-State olfactory network and the Hippocampus in Alzheimer’s disease. Brain Sci. 9, 338 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Vasavada, M. M. et al. Olfactory cortex degeneration in Alzheimer’s disease and mild cognitive impairment. J. Alzheimer’s Disease. 45, 947–958 (2015).

    Article 
    MATH 

    Google Scholar 

  • Doty, R. L., Shaman, P., Kimmelman, C. P. & Dann, M. S. University of Pennsylvania smell identification test: a rapid quantitative olfactory function test for the clinic. Laryngoscope 94, 176–178 (1984).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E. & Kobal, G. Sniffin’sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses. 22, 39–52 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lafaille-Magnan, M. E. et al. Odor identification as a biomarker of preclinical AD in older adults at risk. Neurology 89, 327–335 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Risacher, S. L. et al. Olfactory identification in subjective cognitive decline and mild cognitive impairment: association with Tau but not amyloid positron emission tomography. Alzheimer’s Dementia: Diagnosis Assess. Disease Monit. 9, 57–66 (2017).

    Google Scholar 

  • Tu, L. et al. Association of odor identification ability with Amyloid-β and Tau burden: A systematic review and Meta-Analysis. Front. Neurosci. 14, 586330 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klein, J. et al. Olfactory impairment is related to Tau pathology and neuroinflammation in Alzheimer’s disease. JAD 80, 1051–1065 (2021).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Reijs, B. L. R. et al. Relation of odor identification with Alzheimer’s disease markers in cerebrospinal fluid and cognition. JAD 60, 1025–1034 (2017).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Devanand, D. P. et al. Olfactory identification deficits and MCI in a multi-ethnic elderly community sample. Neurobiol. Aging. 31, 1593–1600 (2010).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Kose, Y. et al. Association between the inability to identify particular odors and physical performance, cognitive function, and/or brain atrophy in community-dwelling older adults from the Fukuoka Island City study. BMC Geriatr. 21, 421 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagemeier, J. et al. Odor identification deficit in mild cognitive impairment and Alzheimer’s disease is associated with hippocampal and deep Gray matter atrophy. Psychiatry Research: Neuroimaging. 255, 87–93 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Kjelvik, G. et al. The brain structural and cognitive basis of odor identification deficits in mild cognitive impairment and Alzheimer’s disease. BMC Neurol. 14, 168 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Murphy, C., Jernigan, T. L. & Fennema-Notestine, C. Left hippocampal volume loss in Alzheimer’s disease is reflected in performance on odor identification: A structural MRI study. J. Int. Neuropsychol. Soc. 9, 459–471 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Yoshii, F., Onaka, H., Kohara, S., Ryo, M. & Takahashi, W. Association of smell identification deficit with Alzheimer’s disease assessment Scale-Cognitive subscale, Japanese version scores and brain atrophy in patients with dementia. Eur. Neurol. 81, 145–151 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Yu, H., Chen, Z., Zhao, J., Duan, S. & Zhao, J. Olfactory impairment and hippocampal volume in a Chinese MCI clinical sample. Alzheimer Disease Assoc. Disorders. 33, 124–128 (2019).

    Article 
    MATH 

    Google Scholar 

  • Jobin, B., Roy-Côté, F., Frasnelli, J. & Boller, B. Olfaction and declarative memory in aging: A Meta-analysis. Chem. Senses. bjad045 (2023).

  • Tabert, M. H. et al. A 10-item smell identification scale related to risk for Alzheimer’s disease. Ann. Neurol. 58, 155–160 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Devanand, D. P. et al. Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer’s disease. Biol. Psychiatry. 64, 871–879 (2008).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Conti, M. Z. et al. Odor identification deficit predicts clinical conversion from mild cognitive impairment to dementia due to Alzheimer’s disease. Arch. Clin. Neuropsychol. 28, 391–399 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Roberts, R. O. et al. Association between olfactory dysfunction and amnestic mild cognitive impairment and alzheimer disease dementia. JAMA Neurol. 73, 93–101 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Dhilla Albers, A. et al. Episodic memory of odors stratifies alzheimer biomarkers in normal elderly: POEM: odor memory biomarker in normal elderly. Ann. Neurol. 80, 846–857 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Devanand, D. P. et al. Olfactory deficits predict cognitive decline and alzheimer dementia in an urban community. Neurology 84, 182–189 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Dintica, C. S. et al. Impaired olfaction is associated with cognitive decline and neurodegeneration in the brain. Neurology 92, e700–e709 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Growdon, M. E. et al. Odor identification and alzheimer disease biomarkers in clinically normal elderly. Neurology 84, 2153–2160 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Olofsson, J. K., Larsson, M., Roa, C. & Wilson, D. A. Jonsson Laukka, E. Interaction between odor identification deficit and APOE4 predicts 6-Year cognitive decline in elderly individuals. Behav. Genet. 50, 3–13 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Sohrabi, H. R. et al. Olfactory discrimination predicts cognitive decline among community-dwelling older adults. Transl Psychiatry. 2, e118–e118 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Windon, M. J., Kim, S. J., Oh, E. S. & Lin, S. Y. Predictive value of olfactory impairment for cognitive decline among cognitively normal adults. Laryngoscope 130, 840–847 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Wheeler, P. L. & Murphy, C. Olfactory measures as predictors of conversion to mild cognitive impairment and Alzheimer’s disease. Brain Sci. 11, 1391 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Wilson, R. S. et al. Olfactory identification and incidence of mild cognitive impairment in older age. Arch. Gen. Psychiatry. 64, 802 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Rahayel, S., Frasnelli, J. & Joubert, S. The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: A meta-analysis. Behav. Brain. Res. 231, 60–74 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Schofield, P. W., Moore, T. M. & Gardner, A. Traumatic brain injury and olfaction: A systematic review. Front. Neurol. 5, 5 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Audronyte, E., Pakulaite-Kazliene, G., Sutnikiene, V. & Kaubrys, G. Odor discrimination as a marker of early Alzheimer’s disease. JAD 1-10 (2023).

  • Bastin, C. et al. Anosognosia in mild cognitive impairment: lack of awareness of memory difficulties characterizes prodromal Alzheimer’s disease. Front. Psychiatry. 12, 631518 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallo, D. A., Cramer, S. J., Wong, J. T. & Bennett, D. A. Alzheimer’s disease can spare local metacognition despite global anosognosia: revisiting the confidence–accuracy relationship in episodic memory. Neuropsychologia 50, 2356–2364 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cosentino, S., Metcalfe, J., Butterfield, B. & Stern, Y. Objective metamemory testing captures awareness of deficit in Alzheimer’s disease. Cortex 43, 1004–1019 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vannini, P. et al. Decreased meta-memory is associated with early tauopathy in cognitively unimpaired older adults. NeuroImage: Clin. 24, 102097 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • López-Martos, D. et al. Awareness of episodic memory and meta-cognitive profiles: associations with cerebrospinal fluid biomarkers at the preclinical stage of the Alzheimer’s continuum. Front. Aging Neurosci. 16, 1394460 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albers, M. W. et al. At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimer’s Dement. 11, 70–98 (2015).

    Article 
    MATH 

    Google Scholar 

  • Patel, Z. M. et al. International consensus statement on allergy and rhinology: olfaction. Int. Forum Allergy Rhinol. 12, 327–680 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Rodriguez, S. et al. Innate immune signaling in the olfactory epithelium reduces odorant receptor levels: modeling transient smell loss in COVID-19 patients. Preprint At. (2020).

    Article 

    Google Scholar 

  • Ergun, B. et al. Bonita Springs, FL,. Longitudinal Assessment Of Subjective And Objective Changes In Olfactory Function Following Sars-Cov-2 Infection: A Focus On Odor Identification, Intensity, And General Smell Function. in (2024).

  • Jobin, B. et al. Olfactory function is predictive of brain volumes and memory of former professional football players in the Harvard Football Players Health Study. in (Reykjavík, Iceland., (2024).

  • Runde, A. et al. Bonita Springs, FL,. Digital Accessible Remote Olfactory Mediated Health Assessments For Preclinical AD. in (2024).

  • Jessen, F. et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dement. 10, 844–852 (2014).

    Article 
    MATH 

    Google Scholar 

  • Sperling, R. A. et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 280–292 (2011).

    Article 
    MATH 

    Google Scholar 

  • Jonsson, F. U. Olfactory metacognition. Chem. Senses. 28, 651–658 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Jonsson, F. U. Odor emotionality affects the confidence in odor naming. Chem. Senses. 30, 29–35 (2005).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Roalf, D. R. et al. A quantitative meta-analysis of olfactory dysfunction in mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry. 88, 226–232 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Kjelvik, G. et al. The human brain representation of odor identification in amnestic mild cognitive impairment and Alzheimer’s dementia of mild degree. Front. Neurol. 11, 1779 (2021).

    Article 
    MATH 

    Google Scholar 

  • Patin, A. & Pause, B. M. Human amygdala activations during nasal chemoreception. Neuropsychologia 78, 171–194 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Larsson, M. et al. Olfactory memory in the old and very old: relations to episodic and semantic memory and APOE genotype. Neurobiol. Aging. 38, 118–126 (2016).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Martin, C., Beshel, J. & Kay, L. M. An Olfacto-Hippocampal network is dynamically involved in Odor-Discrimination learning. J. Neurophysiol. 98, 2196–2205 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Desiato, V. M. et al. The prevalence of olfactory dysfunction in the general population: A systematic review and Meta-analysis. Am. J. Rhinol & Allergy. 35, 195–205 (2021).

    Article 
    MATH 

    Google Scholar 

  • Zhang, C. & Wang, X. Initiation of the age-related decline of odor identification in humans: A meta-analysis. Ageing Res. Rev. 40, 45–50 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Oleszkiewicz, A., Schriever, V., Croy, I., Hähner, A. & Hummel, T. Updated sniffin’sticks normative data based on an extended sample of 9139 subjects. Eur. Arch. Otorhinolaryngol. 276, 719–728 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Moberg, P. J. & Raz, N. Aging and olfactory recognition memory: effect of encoding strategies and cognitive abilities. Int. J. Neurosci. 90, 277–291 (1997).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Murphy, C., Nordin, S. & Acosta, L. Odor learning, recall, and recognition memory in young and elderly adults. Neuropsychology 11, 126 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rovee, C. K., Cohen, R. Y. & Schlapack, W. Life-span stability in olfactory sensitivity. Dev. Psychol. 11, 311 (1975).

    Article 

    Google Scholar 

  • Cowart, B. J. Relationships between taste and smell across the adult life span a. Ann. N. Y. Acad. Sci. 561, 39–55 (1989).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Murphy, C. Age-related effects on the threshold, psychophysical function, and pleasantness of menthol. J. Gerontol. 38, 217–222 (1983).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Frasnelli, J. et al. Neuroanatomical correlates of olfactory performance. Exp. Brain Res. 201, 1–11 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Savic, I., Gulyas, B., Larsson, M. & Roland, P. Olfactory functions are mediated by parallel and hierarchical processing. Neuron 26, 735–745 (2000).

    Article 
    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Wilson, D. A. et al. Cortical odor processing in health and disease. in Progress in Brain Research, Vol. 208. 275–305 (2014).

  • Haehner, A., Hummel, T. & Reichmann, H. Olfactory Loss in Parkinson′s Disease. Parkinson’s Disease 450939 (2011). (2011).

  • Yoo, H. S. et al. Olfactory dysfunction in Alzheimer’s disease– and lewy body–related cognitive impairment. Alzheimer’s Dement. 14, 1243–1252 (2018).

    Article 
    MATH 

    Google Scholar 

  • Carnemolla, S. E. et al. Olfactory dysfunction in frontotemporal dementia and psychiatric disorders: A systematic review. Neurosci. Biobehavioral Reviews. 118, 588–611 (2020).

    Article 
    MATH 

    Google Scholar 

  • Lecuyer Giguere, F. et al. Early parosmia signs and affective States predict depression and anxiety symptoms 6 months after a mild traumatic brain injury. Chem. Senses. 45, 483–490 (2020).

    Article 

    Google Scholar 

  • Alosco, M. L. et al. Olfactory function and associated clinical correlates in former National football league players. J. Neurotrauma. 34, 772–780 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zigrand, C. et al. Olfactory perception in patients with a mild traumatic brain injury: a longitudinal study. Brain Inj. 36, 985–990 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Doraiswamy, P. M., Narayan, V. A. & Manji, H. K. Mobile and pervasive computing technologies and the future of Alzheimer’s clinical trials. Npj Digit. Med. 1, 1 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kaye, J. et al. Using digital tools to advance Alzheimer’s drug trials during a pandemic: the EU/US CTAD task force. J. Prev. Alzheimer’s Disease. 8, 513–519 (2021).

    Article 
    MATH 
    CAS 

    Google Scholar 

  • Green, P., Rohling, M. L., Iverson, G. L. & Gervais, R. O. Relationships between olfactory discrimination and head injury severity. Brain Inj. 17, 479–496 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Tsai, M. S. et al. Apolipoprotein E: risk factor for alzheimer disease. Am. J. Hum. Genet. 54, 643–649 (1994).

    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Weiner, M. W. et al. Increasing participant diversity in AD research: plans for digital screening, blood testing, and a community-engaged approach in the Alzheimer’s disease neuroimaging initiative 4. Alzheimer’s Dement. 19, 307–317 (2023).

    Article 
    MATH 

    Google Scholar 

  • Kruse, C. S. et al. Telehealth and patient satisfaction: a systematic review and narrative analysis. BMJ Open. 7, e016242 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Atmojo, J. T. et al. Cost effectiveness, and patients satisfaction: A systematic review. J. HEALTH POLICY MANAGE. 5, 103–107 (2020). Telemedicine.

    Article 

    Google Scholar 

  • Besser, L. et al. Version 3 of the National Alzheimer’s coordinating center’s uniform data set. Alzheimer Disease Assoc. Disorders. 32, 351–358 (2018).

    Article 
    MATH 

    Google Scholar 

  • Albert, M. S. et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 270–279 (2011).

    Article 
    MATH 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *